Построение по НКА эквивалентного ДКА, алгоритм Томпсона — различия между версиями
(→Доказательство эквивалентности) |
(→Построение эквивалентного ДКА по НКА) |
||
Строка 5: | Строка 5: | ||
ДКА, описанный в следующих строках является эквивалентным НКА. | ДКА, описанный в следующих строках является эквивалентным НКА. | ||
− | ДКА: <tex>\langle \Sigma , Q_d, \ | + | ДКА: <tex>\langle \Sigma , Q_d, \S_d \in Q_d, T_d \subset Q_d, \delta_d : Q_d \times \Sigma \to Q_d \rangle</tex>, где: |
# <tex>Q_d = 2^Q</tex>. | # <tex>Q_d = 2^Q</tex>. | ||
+ | # <tex>S_d = \{s\}</tex>. | ||
# <tex>T_d = \{q \in Q_d | \exists p \in T : p \in q\}</tex>. | # <tex>T_d = \{q \in Q_d | \exists p \in T : p \in q\}</tex>. | ||
# <tex>\delta_d(q, c) = \cup_{i=1}^{m} \delta(a_i, c)</tex> при условии, что <tex>q = \{a_1, ..., a_m\}</tex>. | # <tex>\delta_d(q, c) = \cup_{i=1}^{m} \delta(a_i, c)</tex> при условии, что <tex>q = \{a_1, ..., a_m\}</tex>. |
Версия 22:09, 21 октября 2011
Содержание
Построение эквивалентного ДКА по НКА
НКА:
.ДКА, описанный в следующих строках является эквивалентным НКА.
ДКА:
, где:- .
- .
- .
- при условии, что .
Доказательство эквивалентности
Теорема: |
Построенный ДКА эквивалентен данному НКА. |
Доказательство: |
Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Сначала сделаем наблюдение, что если , и является символом перехода, то : .Рассмотрим слово w, которое принимает автомат НКА: .Проверим, что построенный ДКА тоже принимает это слово.
Рассмотрим последовательность состояний НКА, когда принимали слово - - и последовательность состояний ДКА, когда принимали слово - .Мы знаем, что - терминальная, так как НКА принимает слово. Надо доказать, что - терминальная.Заметим, что - так как это стартовые состояния, а, значит, по нашему наблюдению и так далее. Получается, что . Мы знаем, что - терминальная вершина, а, значит, по определению терминальной вершины в нашем ДКА, что - тоже терминальная.Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если , соответствует множеству из одного элемента - , и мы из него достигли по строке какого-то состояния , то : существует путь из в в НКА по строке .Рассмотрим последовательность состояний ДКА, когда принимали слово - .А так как - стартовое состояние, соответствует множеству из одного элемента - - стартовое состояние. Мы из достигли , возьмём любое терминальное состояние - по нашему наблюдению, в НКА есть путь из в по нужной строке, а, значит, что НКА принимает это слово.Получается, что мы доказали, что если НКА принимает слово, равносильно тому, что ДКА его тоже принимает. А это означает, что автоматы эквивалентны. |
Алгоритм Томпсона
Данный алгоритм преобразовывает НКА в эквивалентный ДКА. Мы будем использовать предыдущий алгоритм построения с одним дополнением - нам не нужны состояния недостижимые из стартового.
Поэтому в алгоритме используется обход в ширину.
Алгоритм
- очередь состояний, соответствующих множествам, состоящих из состояний НКА. - стартовое состояние НКА.
1:2: 3: 4: 5: 6: 7: 8: ) 9: 10: 11:
Верхняя оценка на работу алгоритмы -
- так как количество подмножеств множества состояний НКА не более, чем , а каждое подмножество мы обрабатываем за и ровно один раз.