Алгоритм Форда-Беллмана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Корректировка + оформление)
Строка 1: Строка 1:
{{В разработке}}
 
 
==Алгоритм==
 
==Алгоритм==
Для заданного взвешенного графа <tex>G = (V, E)</tex> алгоритм находит кратчайшие пути из заданной вершины <tex> s </tex> до всех остальных вершин, в случае когда в графе <tex> G </tex> содержатся отрицательные циклы достижимые из <tex> s </tex> алгоритм сообщает, что кратчайших путей не существует.
+
:Для заданного взвешенного графа <tex>G = (V, E)</tex> алгоритм находит кратчайшие пути из заданной вершины <tex> s </tex> до всех остальных вершин.<br>
 +
случае когда в графе <tex> G </tex> содержатся отрицательные циклы достижимые из <tex> s </tex> алгоритм сообщает, что кратчайших путей не существует.
  
 
==Псевдокод==
 
==Псевдокод==
Строка 10: Строка 10:
 
   <tex>d[s] \leftarrow 0 </tex>
 
   <tex>d[s] \leftarrow 0 </tex>
 
   '''for''' <tex> i \leftarrow 1 </tex> '''to''' <tex> \mid V[G] \mid - 1 </tex>
 
   '''for''' <tex> i \leftarrow 1 </tex> '''to''' <tex> \mid V[G] \mid - 1 </tex>
       '''do''' '''for''' для каждого ребра <tex> (u, v) \in E[G] </tex>
+
       '''for''' для каждого ребра <tex> (u, v) \in E[G] </tex>
             '''do''' '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
+
             '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
 
                   '''then''' <tex>d[v] \leftarrow d[u] + \omega(u, v)</tex>
 
                   '''then''' <tex>d[v] \leftarrow d[u] + \omega(u, v)</tex>
 
   '''for''' для каждого ребра <tex> (u, v) \in E[G] </tex>
 
   '''for''' для каждого ребра <tex> (u, v) \in E[G] </tex>
       '''do''' '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
+
       '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
 
             '''then''' '''return''' <tex> \mathit false</tex>
 
             '''then''' '''return''' <tex> \mathit false</tex>
 
   '''return''' <tex> \mathit true </tex>
 
   '''return''' <tex> \mathit true </tex>
  
 
==Корректность алгоритма Форда-Беллмана==
 
==Корректность алгоритма Форда-Беллмана==
 +
:В этом алгоритме используется релаксация, в результате которой <tex>d[v]</tex> уменьшается до тех пор, пока не станет равным <tex>\delta(s, v)</tex>. <br>
 +
:<tex>d[v]</tex> - оценка веса кратчайшего пути из вершины <tex>s</tex> в каждую вершину <tex>v \in V</tex>.<br>
 +
:<tex>\delta(s, v)</tex> - фактический вес кратчайшего пути из  <tex>s</tex> в вершину <tex>v</tex>.
 +
 +
 
{{Лемма
 
{{Лемма
|statement=Пусть <tex>G = (V, E) </tex> — взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. Тогда после завершения <tex> \mid V[G] \mid - 1 </tex> итераций цикла для всех вершин, достижимых из <tex>s</tex>, выполняется равенство <tex> d[v] = \delta (s, v) </tex>.
+
|statement=Пусть <tex>G = (V, E) </tex> — взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина.<br>Тогда после завершения <tex> \mid V[G] \mid - 1 </tex> итераций цикла для всех вершин, достижимых из <tex>s</tex>, выполняется равенство <tex> d[v] = \delta (s, v) </tex>.
|proof=Рассмотрим произвольную вершину <tex>v</tex>, достижимую из <tex>s</tex>, <tex>p = {v_0,..., v_{k}}</tex>, где <tex>v_0 = s</tex>, <tex>v_{k} = v</tex> — кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>. Путь <tex> p </tex> содержит не более <tex> \mid V[G] \mid - 1 </tex> ребер. На каждой из <tex> \mid V[G] \mid - 1 </tex> итераций цикла релаксируются <tex> \mid E[G] \mid </tex> ребер. Среди ребер, прорелаксированных во время i-й итерации, находится ребро <tex> (v_{i-1}, v_{i}) </tex>. Поэтому выполнены равенства <tex>d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v))</tex>.
+
|proof=:Рассмотрим произвольную вершину <tex>v</tex>, достижимую из <tex>s</tex>.
 +
 
 +
 
 +
:Пусть <tex>p = \langle v_0,..., v_{k} \rangle </tex>, где <tex>v_0 = s</tex>, <tex>v_{k} = v</tex> — кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>.<br>
 +
:Путь <tex> p </tex> содержит не более <tex> \mid V[G] \mid - 1 </tex> ребер. Поэтому <tex>k \le \mid V[G] \mid - 1</tex>.
 +
 
 +
 
 +
:На каждой из <tex> \mid V[G] \mid - 1 </tex> итераций цикла <b> for </b> релаксируются <tex> \mid E[G] \mid </tex> ребер.<br>
 +
:Среди ребер, прорелаксированных во время i-й итерации, находится ребро <tex> (v_{i-1}, v_{i}) </tex>.
 +
 
 +
:Поэтому выполнены равенства <tex>d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v))</tex>.
 
}}
 
}}
 +
  
 
{{Теорема
 
{{Теорема
|statement=Пусть <tex>G = (V, E) </tex> - взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. Если граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>, то алгоритм возвращает <tex> true </tex> и для всех <tex> v \in V[G] \  d[v] = \delta (s, v)</tex>. Если граф <tex> G </tex> содержит отрицательные циклы, достижимые из вершины <tex> s </tex>, то алгоритм возвращает <tex> false </tex>
+
|statement=Пусть <tex>G = (V, E) </tex> - взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина.<br>Если граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>, то алгоритм возвращает <tex> true </tex> и для всех <tex> v \in V[G] \  d[v] = \delta (s, v)</tex>.<br>Если граф <tex> G </tex> содержит отрицательные циклы, достижимые из вершины <tex> s </tex>, то алгоритм возвращает <tex> false </tex>
|proof=Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>. Тогда если вершина <tex> v </tex> достижима из <tex> s </tex>, то по лемме <tex> d[v] = \delta (s, v)</tex>. Если вершина <tex> v </tex> не достижима из <tex> s </tex>, то <tex> d[v] = \delta (s, v) = \mathcal {1}</tex> из несуществования пути. Теперь докажем, что алгоритм вернет значение <tex> true </tex>. После выполнения алгоритма верно, что для всех <tex> (u, v) \in E[G], \  d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)</tex>, значит ни одна из проверок не вернет значения <tex> false </tex>.
+
|proof=:Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>.<br>
Пусть граф <tex> G </tex> содержит отрицательный цикл <tex> c = {v_0,...,v_{k}} </tex>, где <tex> v_0 = v_{k} </tex>, достижимый из вершины <tex> s </tex>. Тогда <tex>\sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} < 0 </tex>. Предположим, что алгоритм возвращает <tex> true </tex>, тогда для <tex> i = 1,...,k </tex> выполняется <tex> d[v_{i}] \leqslant d[v_{i-1}] + \omega (v_{i-1}, v_{i}) </tex>. Просуммируем эти неравенства по всему циклу: <tex>\sum\limits_{i=1}^{k} {d[v_{i}]} \leqslant \sum\limits_{i=1}^{k} {d[v_{i-1}]} + \sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} </tex>. Из того, что <tex> v_0 = v_{k} </tex> следует, что <tex> \sum\limits^{k}_{i=1} {d[v_{i}]} = \sum \limits_{i=1}^{k} {d[v_{i - 1}]} </tex>. Получили, что <tex> \sum \limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \ge 0 </tex>, что противоречит отрицательности цикла <tex> c </tex>.
+
:Тогда если вершина <tex> v </tex> достижима из <tex> s </tex>, то по лемме <tex> d[v] = \delta (s, v)</tex>.<br>
 +
:Если вершина <tex> v </tex> не достижима из <tex> s </tex>, то <tex> d[v] = \delta (s, v) = \mathcal {1}</tex> из несуществования пути.  
 +
 
 +
 
 +
:Теперь докажем, что алгоритм вернет значение <tex> true </tex>.<br>
 +
:После выполнения алгоритма верно, что для всех <tex> (u, v) \in E[G], \  d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)</tex>, значит ни одна из проверок не вернет значения <tex> false </tex>.
 +
 
 +
 
 +
:Пусть граф <tex> G </tex> содержит отрицательный цикл <tex> c = {v_0,...,v_{k}} </tex>, где <tex> v_0 = v_{k} </tex>, достижимый из вершины <tex> s </tex>.<br>
 +
:Тогда <tex>\sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} < 0 </tex>.<br>
 +
:Предположим, что алгоритм возвращает <tex> true </tex>, тогда для <tex> i = 1,...,k </tex> выполняется <tex> d[v_{i}] \leqslant d[v_{i-1}] + \omega (v_{i-1}, v_{i}) </tex>.<br>
 +
:Просуммируем эти неравенства по всему циклу: <tex>\sum\limits_{i=1}^{k} {d[v_{i}]} \leqslant \sum\limits_{i=1}^{k} {d[v_{i-1}]} + \sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} </tex>.<br>
 +
:Из того, что <tex> v_0 = v_{k} </tex> следует, что <tex> \sum\limits^{k}_{i=1} {d[v_{i}]} = \sum \limits_{i=1}^{k} {d[v_{i - 1}]} </tex>.
 +
 
 +
 
 +
:Получили, что <tex> \sum \limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \ge 0 </tex>, что противоречит отрицательности цикла <tex> c </tex>.
 
}}
 
}}
  
 
==Сложность==
 
==Сложность==
Инициализация занимает <tex> \Theta (V) </tex> времени, каждый из <tex> \mid V[G] \mid - 1 </tex> проходов требует <tex> \Theta (E) </tex> времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает <tex>O(E)</tex> времени. Итого алгоритм Беллмана-Форда работает за <tex>O(V E)</tex> времени.
+
:Инициализация занимает <tex> \Theta (V) </tex> времени, каждый из <tex> \mid V[G] \mid - 1 </tex> проходов требует <tex> \Theta (E) </tex> времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает <tex>O(E)</tex> времени.<br>Итого алгоритм Беллмана-Форда работает за <tex>O(V E)</tex> времени.
  
 
== Литература ==
 
== Литература ==
Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.672 — 676. — ISBN 978-5-8459-0857-5.
+
:Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.672 — 676. — ISBN 978-5-8459-0857-5.
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Кратчайшие пути в графах]]
 
[[Категория: Кратчайшие пути в графах]]

Версия 10:58, 25 октября 2011

Алгоритм

Для заданного взвешенного графа [math]G = (V, E)[/math] алгоритм находит кратчайшие пути из заданной вершины [math] s [/math] до всех остальных вершин.
В случае когда в графе [math] G [/math] содержатся отрицательные циклы достижимые из [math] s [/math] алгоритм сообщает, что кратчайших путей не существует.

Псевдокод

Bellman_Ford(G, s)
  for для каждой [math]v \in V[G][/math]
    do [math] d[v] \leftarrow \mathcal {1} [/math]
  [math]d[s] \leftarrow 0 [/math]
  for [math] i \leftarrow 1 [/math] to [math] \mid V[G] \mid - 1 [/math]
     for для каждого ребра [math] (u, v) \in E[G] [/math]
           if [math]d[v] \gt  d[u] + \omega(u, v) [/math]
                 then [math]d[v] \leftarrow d[u] + \omega(u, v)[/math]
  for для каждого ребра [math] (u, v) \in E[G] [/math]
     if [math]d[v] \gt  d[u] + \omega(u, v) [/math]
           then return [math] \mathit false[/math]
  return [math] \mathit true [/math]

Корректность алгоритма Форда-Беллмана

В этом алгоритме используется релаксация, в результате которой [math]d[v][/math] уменьшается до тех пор, пока не станет равным [math]\delta(s, v)[/math].
[math]d[v][/math] - оценка веса кратчайшего пути из вершины [math]s[/math] в каждую вершину [math]v \in V[/math].
[math]\delta(s, v)[/math] - фактический вес кратчайшего пути из [math]s[/math] в вершину [math]v[/math].


Лемма:
Пусть [math]G = (V, E) [/math] — взвешенный ориентированный граф, [math] s [/math] — стартовая вершина.
Тогда после завершения [math] \mid V[G] \mid - 1 [/math] итераций цикла для всех вершин, достижимых из [math]s[/math], выполняется равенство [math] d[v] = \delta (s, v) [/math].
Доказательство:
[math]\triangleright[/math]
Рассмотрим произвольную вершину [math]v[/math], достижимую из [math]s[/math].


Пусть [math]p = \langle v_0,..., v_{k} \rangle [/math], где [math]v_0 = s[/math], [math]v_{k} = v[/math] — кратчайший ациклический путь из [math] s [/math] в [math] v [/math].
Путь [math] p [/math] содержит не более [math] \mid V[G] \mid - 1 [/math] ребер. Поэтому [math]k \le \mid V[G] \mid - 1[/math].


На каждой из [math] \mid V[G] \mid - 1 [/math] итераций цикла for релаксируются [math] \mid E[G] \mid [/math] ребер.
Среди ребер, прорелаксированных во время i-й итерации, находится ребро [math] (v_{i-1}, v_{i}) [/math].
Поэтому выполнены равенства [math]d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v))[/math].
[math]\triangleleft[/math]


Теорема:
Пусть [math]G = (V, E) [/math] - взвешенный ориентированный граф, [math] s [/math] — стартовая вершина.
Если граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math], то алгоритм возвращает [math] true [/math] и для всех [math] v \in V[G] \ d[v] = \delta (s, v)[/math].
Если граф [math] G [/math] содержит отрицательные циклы, достижимые из вершины [math] s [/math], то алгоритм возвращает [math] false [/math]
Доказательство:
[math]\triangleright[/math]
Пусть граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math].
Тогда если вершина [math] v [/math] достижима из [math] s [/math], то по лемме [math] d[v] = \delta (s, v)[/math].
Если вершина [math] v [/math] не достижима из [math] s [/math], то [math] d[v] = \delta (s, v) = \mathcal {1}[/math] из несуществования пути.


Теперь докажем, что алгоритм вернет значение [math] true [/math].
После выполнения алгоритма верно, что для всех [math] (u, v) \in E[G], \ d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)[/math], значит ни одна из проверок не вернет значения [math] false [/math].


Пусть граф [math] G [/math] содержит отрицательный цикл [math] c = {v_0,...,v_{k}} [/math], где [math] v_0 = v_{k} [/math], достижимый из вершины [math] s [/math].
Тогда [math]\sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \lt 0 [/math].
Предположим, что алгоритм возвращает [math] true [/math], тогда для [math] i = 1,...,k [/math] выполняется [math] d[v_{i}] \leqslant d[v_{i-1}] + \omega (v_{i-1}, v_{i}) [/math].
Просуммируем эти неравенства по всему циклу: [math]\sum\limits_{i=1}^{k} {d[v_{i}]} \leqslant \sum\limits_{i=1}^{k} {d[v_{i-1}]} + \sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} [/math].
Из того, что [math] v_0 = v_{k} [/math] следует, что [math] \sum\limits^{k}_{i=1} {d[v_{i}]} = \sum \limits_{i=1}^{k} {d[v_{i - 1}]} [/math].


Получили, что [math] \sum \limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \ge 0 [/math], что противоречит отрицательности цикла [math] c [/math].
[math]\triangleleft[/math]

Сложность

Инициализация занимает [math] \Theta (V) [/math] времени, каждый из [math] \mid V[G] \mid - 1 [/math] проходов требует [math] \Theta (E) [/math] времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает [math]O(E)[/math] времени.
Итого алгоритм Беллмана-Форда работает за [math]O(V E)[/math] времени.

Литература

Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.672 — 676. — ISBN 978-5-8459-0857-5.