Нормальная форма Хомского — различия между версиями
Строка 1: | Строка 1: | ||
+ | {{Определение | ||
+ | |definition=Грамматикой в нормальной форме Хомского (''Chomsky normal form'') называется грамматика, в которой содержатся правила только следующего вида | ||
+ | <tex>A \rightarrow B C </tex> | ||
+ | |||
+ | <tex>A \rightarrow a </tex> | ||
+ | |||
+ | <tex>S \rightarrow \varepsilon </tex> | ||
+ | |||
+ | (где <tex> a </tex> {{---}} терминал, <tex> A, B, C </tex> {{---}} нетерминалы, <tex> S </tex> {{---}} стартовая вершина, <tex> \varepsilon </tex> {{---}} пустая строка). | ||
+ | }} | ||
+ | |||
+ | |||
Рассмотрим [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободную грамматику]] <tex>\Gamma</tex>, из которой удалены [[Удаление бесполезных символов из грамматики|бесполезные символы]], [[Удаление eps-правил из грамматики|<tex>\varepsilon</tex>-правила]], [[Удаление длинных правил из грамматики|длинные правила]] и [[Удаление цепных правил из грамматики|цепные правила]]. Такая грамматика содержит только правила следующего вида: | Рассмотрим [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободную грамматику]] <tex>\Gamma</tex>, из которой удалены [[Удаление бесполезных символов из грамматики|бесполезные символы]], [[Удаление eps-правил из грамматики|<tex>\varepsilon</tex>-правила]], [[Удаление длинных правил из грамматики|длинные правила]] и [[Удаление цепных правил из грамматики|цепные правила]]. Такая грамматика содержит только правила следующего вида: | ||
*<tex>A \rightarrow BC</tex> | *<tex>A \rightarrow BC</tex> |
Версия 03:35, 26 октября 2011
Определение: |
Грамматикой в нормальной форме Хомского (Chomsky normal form) называется грамматика, в которой содержатся правила только следующего вида
(где — терминал, — нетерминалы, — стартовая вершина, — пустая строка). |
Рассмотрим контекстно-свободную грамматику , из которой удалены бесполезные символы, , -правиладлинные правила и цепные правила. Такая грамматика содержит только правила следующего вида:
- возможно, (при условии, что не содержится в правых частях правил)
Избавимся от правил, в правых частях которых записаны два символа, один из которых является терминалом, то есть правил вида
, и . Введем для каждого терминала "персональный" нетерминал . Затем правила вида заменим парой правил и , правила вида заменим парой правил и , а правила вида — тройкой правил , и .Теперь у нас остались только правила вида
, и, возможно, (при условии, что не содержится в правых частях правил). Грамматика, содержащая правила только такого вида, называется грамматикой в нормальной форме Хомского.Заметим, что любую контекстно-свободную грамматику можно привести к нормальной форме Хомского. Такая форма грамматики очень удобна для работы многих алгоритмов над грамматиками, например, алгоритм Кока-Янгера-Касами