Анализ свойств регулярных языков (пустота, совпадение, включение, конечность, подсчёт числа слов) — различия между версиями
Shevchen (обсуждение | вклад) |
Shevchen (обсуждение | вклад) |
||
Строка 131: | Строка 131: | ||
return true | return true | ||
+ | |||
+ | == Включение == | ||
+ | |||
+ | Регулярный язык <tex>L_{1}</tex> '''входит (включается)''' в регулярный язык <tex>L_{2}</tex>, если любое слово, принадлежащее <tex>L_{1}</tex>, принадлежит <tex>L_{2}</tex>. | ||
+ | |||
+ | === Алгоритм проверки на включение === | ||
+ | |||
+ | Алгоритм проверки <tex>L_{1}</tex> на включение в <tex>L_{2}</tex> идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из <tex>L_{2}</tex>, не входящие в <tex>L_{1}</tex>, поэтому существование пар <tex>\langle v \in L_{1}, u \in L_{2} \rangle : eq(v, u) == true, v \notin T_{1}, u \in T_{2}</tex>, где <tex>T_{i}</tex> - множества допускающих состояний, не нарушает факт вхождения <tex>L_{1}</tex> в <tex>L_{2}</tex>. Таким образом, <tex>L_{1}</tex> не входит в <tex>L_{2}</tex> тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары <tex>\langle v, u \rangle</tex>, что <tex>eq(v, u)</tex> возвращает <tex>true</tex>, <tex>v \in T_{1}, u \notin T_{2}</tex>. | ||
+ | |||
+ | ==== Псевдокод ==== | ||
+ | |||
+ | void reverseDfs(State v): | ||
+ | v.canReach = true | ||
+ | for each State u in v.prev: | ||
+ | if !u.canReach: | ||
+ | reverseDfs(u) | ||
+ | |||
+ | void setSink(Automaton a): | ||
+ | State sink = new State | ||
+ | for each symbol c in a.alphabet: | ||
+ | sink.next(c) = sink | ||
+ | for each State v in a: | ||
+ | if !v.canReach: | ||
+ | v = sink | ||
+ | |||
+ | void bfs(Automaton a, Automaton b, boolean[][] eq) | ||
+ | fill(eq, false) | ||
+ | eq[a.start][b.start] = true | ||
+ | Queue q = new Queue | ||
+ | q.add((a.start, b.start)) | ||
+ | while !q.isEmpty: | ||
+ | (v, u) = q.remove() | ||
+ | for each symbol c in a.alphabet: // a.alphabet == b.alphabet | ||
+ | v' = v.next(c) | ||
+ | u' = u.next(c) | ||
+ | if !eq[v'][u']: | ||
+ | eq[v'][u'] = true | ||
+ | q.add((v', u')) | ||
+ | |||
+ | boolean areEqual(Automaton a, Automaton b) | ||
+ | for each State v in a: | ||
+ | v.canReach = false | ||
+ | for each State v in a: | ||
+ | if v.isFinal: | ||
+ | reverseDfs(v) | ||
+ | setSink(a) | ||
+ | for each State v in b: | ||
+ | v.canReach = false | ||
+ | for each State v in b: | ||
+ | if v.isFinal: | ||
+ | reverseDfs(v) | ||
+ | setSink(b) | ||
+ | eq = new boolean[a.statesNumber][b.statesNumber] | ||
+ | bfs(a, b, eq) | ||
+ | for each State v in a: | ||
+ | for each State u in b: | ||
+ | if eq[v][u] && v.isFinal && !u.isFinal: | ||
+ | return false | ||
+ | return true | ||
== Конечность языка, подсчёт числа слов == | == Конечность языка, подсчёт числа слов == |
Версия 08:45, 26 октября 2011
Содержание
Пустота
Регулярный язык является пустым, если он не содержит ни одного слова. Язык, содержащий хотя бы одно слово, назовём непустым.
Утверждение: |
Регулярный язык является непустым тогда и только тогда, когда в любом задающем его автомате существует путь из стартового состояния в какое-либо из терминальных. |
Пусть язык содержит слово . Любой автомат , задающий этот язык, должен допускать . Тогда при переходе из стартового состояния по символам получится путь, оканчивающийся в одной из терминальных вершин.
|
Алгоритм проверки языка на пустоту
Для определения пустоты языка по соответствующему ему автомату проще всего использовать алгоритм обхода в глубину. Язык не является пустым тогда и только тогда, когда при поиске из стартового состояния автомата окажется достижимой хотя бы одна терминальная вершина.
Псевдокод
boolean dfs(State v): v.seen = true if v.isFinal: return false for each State u in v.next: if !u.seen && !dfs(u): return false return true
boolean isEmpty(Automaton a): for each State v in a: v.seen = false return dfs(a.start)
Совпадение
Два регулярных языка совпадают, если любое слово или содержится в обоих языках, или не содержится ни в одном из них.
Пусть
и - детерминированные конечные автоматы, соответствующие языкам и над одним алфавитом , соответственно. Совпадение языков на языке конечных автоматов (эквивалентность) означает, что любое слово, допустимое одним автоматом, допускается и другим. Назовём состояния и различимыми, если существует строка из символов , для которой выполняется,
или
, ,
где
, - стартовые состояния, , - допускающие состояния, , - недопускающие.Все бесполезные состояния, из которых не достигаются допускающие, не влияют на множество слов, допускаемых автоматами, поэтому далее они рассматриваться не будут. Введём сток - специальное недопускающее состояние, переходы по всем символам из которого ведут в него самого. Все переходы исходного автомата, которые отсутствовали или вели в бесполезные состояния, направим в сток.
Алгоритм проверки языков на совпадение
Первым шагом алгоритма является избавление автоматов от состояний, из которых недостижимы допускающие. Проще всего это реализовать обходом в глубину или в ширину из допускающих состояний по обратным рёбрам. Все непосещённые состояния затем удаляются из автоматов, вместо них вводится описанный выше сток.
Пусть - функция, принимающая пару состояний из первого и второго автоматов и возвращающая некоторое значение булевского типа. Второй шаг алгоритма - установка в для всех пар , кроме . Также создаётся очередь, в которую помещается пара .
Третий шаг алгоритма - обход в ширину. Пусть на текущем шаге из очереди получена пара . Тогда для всех символов рассматриваются пары . Если возвращает , данное значение устанавливается в , а в очередь добавляется пара .
Утверждение: |
Автоматы и эквивалентны тогда и только тогда, когда после окончания работы алгоритма не существует такой пары , что возвращает и ровно одно из допускающее. |
Пусть такой пары не существует. Возьмём произвольное слово длины и выпишем последовательность пар состояний :и справедливо . Так как пара была в очереди, каждая из последующих пар в процессе алгоритма также побывала в очереди, значит, для них возвращает . По предположению, или оба состояния допускающие в своих автоматах, или оба недопускающие. Таким образом, строка или входит в оба языка, или не входит ни в один.
|
Псевдокод
void reverseDfs(State v): v.canReach = true for each State u in v.prev: if !u.canReach: reverseDfs(u)
void setSink(Automaton a): State sink = new State for each symbol c in a.alphabet: sink.next(c) = sink for each State v in a: if !v.canReach: v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq) fill(eq, false) eq[a.start][b.start] = true Queue q = new Queue q.add((a.start, b.start)) while !q.isEmpty: (v, u) = q.remove() for each symbol c in a.alphabet: // a.alphabet == b.alphabet v' = v.next(c) u' = u.next(c) if !eq[v'][u']: eq[v'][u'] = true q.add((v', u'))
boolean areEqual(Automaton a, Automaton b) for each State v in a: v.canReach = false for each State v in a: if v.isFinal: reverseDfs(v) setSink(a) for each State v in b: v.canReach = false for each State v in b: if v.isFinal: reverseDfs(v) setSink(b) eq = new boolean[a.statesNumber][b.statesNumber] bfs(a, b, eq) for each State v in a: for each State u in b: if eq[v][u] && v.isFinal != u.isFinal: return false return true
Включение
Регулярный язык
входит (включается) в регулярный язык , если любое слово, принадлежащее , принадлежит .Алгоритм проверки на включение
Алгоритм проверки
на включение в идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из , не входящие в , поэтому существование пар , где - множества допускающих состояний, не нарушает факт вхождения в . Таким образом, не входит в тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары , что возвращает , .Псевдокод
void reverseDfs(State v): v.canReach = true for each State u in v.prev: if !u.canReach: reverseDfs(u)
void setSink(Automaton a): State sink = new State for each symbol c in a.alphabet: sink.next(c) = sink for each State v in a: if !v.canReach: v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq) fill(eq, false) eq[a.start][b.start] = true Queue q = new Queue q.add((a.start, b.start)) while !q.isEmpty: (v, u) = q.remove() for each symbol c in a.alphabet: // a.alphabet == b.alphabet v' = v.next(c) u' = u.next(c) if !eq[v'][u']: eq[v'][u'] = true q.add((v', u'))
boolean areEqual(Automaton a, Automaton b) for each State v in a: v.canReach = false for each State v in a: if v.isFinal: reverseDfs(v) setSink(a) for each State v in b: v.canReach = false for each State v in b: if v.isFinal: reverseDfs(v) setSink(b) eq = new boolean[a.statesNumber][b.statesNumber] bfs(a, b, eq) for each State v in a: for each State u in b: if eq[v][u] && v.isFinal && !u.isFinal: return false return true
Конечность языка, подсчёт числа слов
Язык называется конечным, если принадлежащее ему множество слов конечно.
Утверждение: |
Автомат задаёт конечный язык тогда и только тогда, когда в не существует состояния , для которого выполняются три условия:
1) 3) из достижимо из стартового состояния ; 2) из достижимо какое-либо из допускающих состояний; по одному или более переходам достижимо . |
Пусть такое состояние существует, а строки таковы, что , - допускающее, - непустая. Рассмотрим строки вида . Их бесконечное количество, и все они, как легко увидеть, допускаются автоматом. Значит, язык бесконечен.
|
Алгоритм нахождения числа слов в языке
Доказанное утверждение позволяет свести задачу поиска числа слов в языке к поиску количества различных путей в ациклическом графе. Сначала с помощью обхода в глубину по обратным рёбрам определим полезные состояния, из которых достижимо хотя бы одно допускающее. Затем найдём любой цикл, состояния которого полезны, достижимый из старта; при нахождении констатируем бесконечность языка. Пусть язык конечен; тогда отсортируем автомат топологически. Введём функцию , задающую число различных путей из в ; . Заметим, что если известны значения для всех , из которых существует переход в , то . Количеством слов в языке будет сумма для всех допускающих .
Топологическую сортировку и поиск цикла можно объединить в один обход, но для наглядности они были разделены.
Псевдокод
Stack topSort(Automaton a): for each State v in a: v.seen = false Stack sorted = new Stack dfsSort(a.start, sorted) return sorted
void dfsSort(State v, Stack sorted): v.seen = true for each State u in v.next: if !u.seen: dfsSort(u, sorted) sorted.push(v)
void reverseDfs(State v): v.canReach = true for each State u in v.prev: if !u.canReach: reverseDfs(u)
boolean dfs(State v): // returns true iff there is a cycle v.color = GREY for each State u in v.next: if u.color == GREY: return true if u.canReach && u.color == WHITE && dfs(u): return true v.color = BLACK return false
int words(Automaton a): for each State v in a: v.canReach = false for each State v in a: if v.isFinal: reverseDfs(v) for each State v in a: v.color = WHITE if dfs(a.start): return infinity Stack sorted = topSort(a) paths = new int[a.statesNumber] fill(paths, 0) paths[0] = 1 while !sorted.isEmpty: State v = sorted.pop() for each State u in v.next: paths[u] += paths[v] int result = 0 for each State v in a: if v.isFinal: result += paths[v] return result