Анализ свойств регулярных языков (пустота, совпадение, включение, конечность, подсчёт числа слов) — различия между версиями
Shevchen (обсуждение | вклад) |
Shevchen (обсуждение | вклад) |
||
| Строка 131: | Строка 131: | ||
return true | return true | ||
| + | |||
| + | == Включение == | ||
| + | |||
| + | Регулярный язык <tex>L_{1}</tex> '''входит (включается)''' в регулярный язык <tex>L_{2}</tex>, если любое слово, принадлежащее <tex>L_{1}</tex>, принадлежит <tex>L_{2}</tex>. | ||
| + | |||
| + | === Алгоритм проверки на включение === | ||
| + | |||
| + | Алгоритм проверки <tex>L_{1}</tex> на включение в <tex>L_{2}</tex> идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из <tex>L_{2}</tex>, не входящие в <tex>L_{1}</tex>, поэтому существование пар <tex>\langle v \in L_{1}, u \in L_{2} \rangle : eq(v, u) == true, v \notin T_{1}, u \in T_{2}</tex>, где <tex>T_{i}</tex> - множества допускающих состояний, не нарушает факт вхождения <tex>L_{1}</tex> в <tex>L_{2}</tex>. Таким образом, <tex>L_{1}</tex> не входит в <tex>L_{2}</tex> тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары <tex>\langle v, u \rangle</tex>, что <tex>eq(v, u)</tex> возвращает <tex>true</tex>, <tex>v \in T_{1}, u \notin T_{2}</tex>. | ||
| + | |||
| + | ==== Псевдокод ==== | ||
| + | |||
| + | void reverseDfs(State v): | ||
| + | v.canReach = true | ||
| + | for each State u in v.prev: | ||
| + | if !u.canReach: | ||
| + | reverseDfs(u) | ||
| + | |||
| + | void setSink(Automaton a): | ||
| + | State sink = new State | ||
| + | for each symbol c in a.alphabet: | ||
| + | sink.next(c) = sink | ||
| + | for each State v in a: | ||
| + | if !v.canReach: | ||
| + | v = sink | ||
| + | |||
| + | void bfs(Automaton a, Automaton b, boolean[][] eq) | ||
| + | fill(eq, false) | ||
| + | eq[a.start][b.start] = true | ||
| + | Queue q = new Queue | ||
| + | q.add((a.start, b.start)) | ||
| + | while !q.isEmpty: | ||
| + | (v, u) = q.remove() | ||
| + | for each symbol c in a.alphabet: // a.alphabet == b.alphabet | ||
| + | v' = v.next(c) | ||
| + | u' = u.next(c) | ||
| + | if !eq[v'][u']: | ||
| + | eq[v'][u'] = true | ||
| + | q.add((v', u')) | ||
| + | |||
| + | boolean areEqual(Automaton a, Automaton b) | ||
| + | for each State v in a: | ||
| + | v.canReach = false | ||
| + | for each State v in a: | ||
| + | if v.isFinal: | ||
| + | reverseDfs(v) | ||
| + | setSink(a) | ||
| + | for each State v in b: | ||
| + | v.canReach = false | ||
| + | for each State v in b: | ||
| + | if v.isFinal: | ||
| + | reverseDfs(v) | ||
| + | setSink(b) | ||
| + | eq = new boolean[a.statesNumber][b.statesNumber] | ||
| + | bfs(a, b, eq) | ||
| + | for each State v in a: | ||
| + | for each State u in b: | ||
| + | if eq[v][u] && v.isFinal && !u.isFinal: | ||
| + | return false | ||
| + | return true | ||
== Конечность языка, подсчёт числа слов == | == Конечность языка, подсчёт числа слов == | ||
Версия 08:45, 26 октября 2011
Содержание
Пустота
Регулярный язык является пустым, если он не содержит ни одного слова. Язык, содержащий хотя бы одно слово, назовём непустым.
| Утверждение: |
Регулярный язык является непустым тогда и только тогда, когда в любом задающем его автомате существует путь из стартового состояния в какое-либо из терминальных. |
|
Пусть язык содержит слово . Любой автомат , задающий этот язык, должен допускать . Тогда при переходе из стартового состояния по символам получится путь, оканчивающийся в одной из терминальных вершин.
|
Алгоритм проверки языка на пустоту
Для определения пустоты языка по соответствующему ему автомату проще всего использовать алгоритм обхода в глубину. Язык не является пустым тогда и только тогда, когда при поиске из стартового состояния автомата окажется достижимой хотя бы одна терминальная вершина.
Псевдокод
boolean dfs(State v):
v.seen = true
if v.isFinal:
return false
for each State u in v.next:
if !u.seen && !dfs(u):
return false
return true
boolean isEmpty(Automaton a):
for each State v in a:
v.seen = false
return dfs(a.start)
Совпадение
Два регулярных языка совпадают, если любое слово или содержится в обоих языках, или не содержится ни в одном из них.
Пусть и - детерминированные конечные автоматы, соответствующие языкам и над одним алфавитом , соответственно. Совпадение языков на языке конечных автоматов (эквивалентность) означает, что любое слово, допустимое одним автоматом, допускается и другим. Назовём состояния и различимыми, если существует строка из символов , для которой выполняется
,
или
, ,
где , - стартовые состояния, , - допускающие состояния, , - недопускающие.
Все бесполезные состояния, из которых не достигаются допускающие, не влияют на множество слов, допускаемых автоматами, поэтому далее они рассматриваться не будут. Введём сток - специальное недопускающее состояние, переходы по всем символам из которого ведут в него самого. Все переходы исходного автомата, которые отсутствовали или вели в бесполезные состояния, направим в сток.
Алгоритм проверки языков на совпадение
Первым шагом алгоритма является избавление автоматов от состояний, из которых недостижимы допускающие. Проще всего это реализовать обходом в глубину или в ширину из допускающих состояний по обратным рёбрам. Все непосещённые состояния затем удаляются из автоматов, вместо них вводится описанный выше сток.
Пусть - функция, принимающая пару состояний из первого и второго автоматов и возвращающая некоторое значение булевского типа. Второй шаг алгоритма - установка в для всех пар , кроме . Также создаётся очередь, в которую помещается пара .
Третий шаг алгоритма - обход в ширину. Пусть на текущем шаге из очереди получена пара . Тогда для всех символов рассматриваются пары . Если возвращает , данное значение устанавливается в , а в очередь добавляется пара .
| Утверждение: |
Автоматы и эквивалентны тогда и только тогда, когда после окончания работы алгоритма не существует такой пары , что возвращает и ровно одно из допускающее. |
|
Пусть такой пары не существует. Возьмём произвольное слово длины и выпишем последовательность пар состояний : и справедливо . Так как пара была в очереди, каждая из последующих пар в процессе алгоритма также побывала в очереди, значит, для них возвращает . По предположению, или оба состояния допускающие в своих автоматах, или оба недопускающие. Таким образом, строка или входит в оба языка, или не входит ни в один.
|
Псевдокод
void reverseDfs(State v):
v.canReach = true
for each State u in v.prev:
if !u.canReach:
reverseDfs(u)
void setSink(Automaton a):
State sink = new State
for each symbol c in a.alphabet:
sink.next(c) = sink
for each State v in a:
if !v.canReach:
v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq)
fill(eq, false)
eq[a.start][b.start] = true
Queue q = new Queue
q.add((a.start, b.start))
while !q.isEmpty:
(v, u) = q.remove()
for each symbol c in a.alphabet: // a.alphabet == b.alphabet
v' = v.next(c)
u' = u.next(c)
if !eq[v'][u']:
eq[v'][u'] = true
q.add((v', u'))
boolean areEqual(Automaton a, Automaton b)
for each State v in a:
v.canReach = false
for each State v in a:
if v.isFinal:
reverseDfs(v)
setSink(a)
for each State v in b:
v.canReach = false
for each State v in b:
if v.isFinal:
reverseDfs(v)
setSink(b)
eq = new boolean[a.statesNumber][b.statesNumber]
bfs(a, b, eq)
for each State v in a:
for each State u in b:
if eq[v][u] && v.isFinal != u.isFinal:
return false
return true
Включение
Регулярный язык входит (включается) в регулярный язык , если любое слово, принадлежащее , принадлежит .
Алгоритм проверки на включение
Алгоритм проверки на включение в идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из , не входящие в , поэтому существование пар , где - множества допускающих состояний, не нарушает факт вхождения в . Таким образом, не входит в тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары , что возвращает , .
Псевдокод
void reverseDfs(State v):
v.canReach = true
for each State u in v.prev:
if !u.canReach:
reverseDfs(u)
void setSink(Automaton a):
State sink = new State
for each symbol c in a.alphabet:
sink.next(c) = sink
for each State v in a:
if !v.canReach:
v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq)
fill(eq, false)
eq[a.start][b.start] = true
Queue q = new Queue
q.add((a.start, b.start))
while !q.isEmpty:
(v, u) = q.remove()
for each symbol c in a.alphabet: // a.alphabet == b.alphabet
v' = v.next(c)
u' = u.next(c)
if !eq[v'][u']:
eq[v'][u'] = true
q.add((v', u'))
boolean areEqual(Automaton a, Automaton b)
for each State v in a:
v.canReach = false
for each State v in a:
if v.isFinal:
reverseDfs(v)
setSink(a)
for each State v in b:
v.canReach = false
for each State v in b:
if v.isFinal:
reverseDfs(v)
setSink(b)
eq = new boolean[a.statesNumber][b.statesNumber]
bfs(a, b, eq)
for each State v in a:
for each State u in b:
if eq[v][u] && v.isFinal && !u.isFinal:
return false
return true
Конечность языка, подсчёт числа слов
Язык называется конечным, если принадлежащее ему множество слов конечно.
| Утверждение: |
Автомат задаёт конечный язык тогда и только тогда, когда в не существует состояния , для которого выполняются три условия:
1) достижимо из стартового состояния ; 2) из достижимо какое-либо из допускающих состояний; 3) из по одному или более переходам достижимо . |
|
Пусть такое состояние существует, а строки таковы, что , - допускающее, - непустая. Рассмотрим строки вида . Их бесконечное количество, и все они, как легко увидеть, допускаются автоматом. Значит, язык бесконечен.
|
Алгоритм нахождения числа слов в языке
Доказанное утверждение позволяет свести задачу поиска числа слов в языке к поиску количества различных путей в ациклическом графе. Сначала с помощью обхода в глубину по обратным рёбрам определим полезные состояния, из которых достижимо хотя бы одно допускающее. Затем найдём любой цикл, состояния которого полезны, достижимый из старта; при нахождении констатируем бесконечность языка. Пусть язык конечен; тогда отсортируем автомат топологически. Введём функцию , задающую число различных путей из в ; . Заметим, что если известны значения для всех , из которых существует переход в , то . Количеством слов в языке будет сумма для всех допускающих .
Топологическую сортировку и поиск цикла можно объединить в один обход, но для наглядности они были разделены.
Псевдокод
Stack topSort(Automaton a):
for each State v in a:
v.seen = false
Stack sorted = new Stack
dfsSort(a.start, sorted)
return sorted
void dfsSort(State v, Stack sorted):
v.seen = true
for each State u in v.next:
if !u.seen:
dfsSort(u, sorted)
sorted.push(v)
void reverseDfs(State v):
v.canReach = true
for each State u in v.prev:
if !u.canReach:
reverseDfs(u)
boolean dfs(State v): // returns true iff there is a cycle
v.color = GREY
for each State u in v.next:
if u.color == GREY:
return true
if u.canReach && u.color == WHITE && dfs(u):
return true
v.color = BLACK
return false
int words(Automaton a):
for each State v in a:
v.canReach = false
for each State v in a:
if v.isFinal:
reverseDfs(v)
for each State v in a:
v.color = WHITE
if dfs(a.start):
return infinity
Stack sorted = topSort(a)
paths = new int[a.statesNumber]
fill(paths, 0)
paths[0] = 1
while !sorted.isEmpty:
State v = sorted.pop()
for each State u in v.next:
paths[u] += paths[v]
int result = 0
for each State v in a:
if v.isFinal:
result += paths[v]
return result