Основные определения: алфавит, слово, язык, конкатенация, свободный моноид слов; операции над языками — различия между версиями
м |
Kirelagin (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | '''Алфавит''' {{---}} конечное непустое множество | + | '''Алфавит''' {{---}} конечное непустое множество. Условимся обозначать алфавит символом <tex>\Sigma</tex>. |
}} | }} | ||
Строка 32: | Строка 32: | ||
<tex>\Sigma^* = \bigcup \limits _{k=0}^\infty \Sigma^k</tex> — множество всех цепочек над алфавитом <tex>\Sigma</tex>. | <tex>\Sigma^* = \bigcup \limits _{k=0}^\infty \Sigma^k</tex> — множество всех цепочек над алфавитом <tex>\Sigma</tex>. | ||
}} | }} | ||
+ | |||
+ | {{Определение | ||
+ | |id = deflanguage | ||
+ | |definition = | ||
+ | '''Язык''' над алфавитом <tex>\Sigma</tex> {{---}} некоторое подмножество <tex>\Sigma^*</tex>. Иногда такие язык называют '''формальными''', чтобы подчеркнуть отличие от языков в привычном смысле. | ||
+ | }} | ||
+ | |||
+ | Отметим, что язык в <tex>\Sigma</tex> не обязательно должен содержать цепочки, в которые входят все символы <tex>\Sigma</tex>. Поэтому, если известно, что <tex>L</tex> является языком над <tex>\Sigma</tex>, то можно утверждать, что <tex>L</tex> {{---}} это язык над любым алфавитом, являющимся надмножеством <tex>\Sigma</tex>. | ||
{{Определение | {{Определение | ||
Строка 44: | Строка 52: | ||
Таким образом, мы получаем '''свободный [[Моноид|моноид]] слов'''. | Таким образом, мы получаем '''свободный [[Моноид|моноид]] слов'''. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Версия 19:54, 27 октября 2011
Определение: |
Алфавит — конечное непустое множество. Условимся обозначать алфавит символом | .
Наиболее часто используются следующие алфавиты:
- — бинарный или двоичный алфавит.
- — множество строчных букв английского алфавита.
Определение: |
Слово (цепочка) — конечная последовательность символов некоторого алфавита. |
Определение: |
Пустая цепочка — цепочка, не содержащая ни одного символа. Эту цепочку, обозначаемую | , можно рассматривать как цепочку в любом алфавите.
Определение: |
Длина цепочки — число символов в цепочке. Длину некоторой цепочки | обычно обозначают .
Определение: |
— множество цепочек длины над алфавитом . |
Определение: |
— множество всех цепочек над алфавитом . |
Определение: |
Язык над алфавитом | — некоторое подмножество . Иногда такие язык называют формальными, чтобы подчеркнуть отличие от языков в привычном смысле.
Отметим, что язык в не обязательно должен содержать цепочки, в которые входят все символы . Поэтому, если известно, что является языком над , то можно утверждать, что — это язык над любым алфавитом, являющимся надмножеством .
Определение: |
Пусть | . Тогда обозначает их конкатенацию, т.е. цепочку, в которой последовательно записаны цепочки x и y.
Свойства
Таким образом, мы получаем свободный моноид слов.