Алгоритм Эрли, доказательство оценки O(n^2) для однозначной грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Лемма
 
{{Лемма
 +
|about=1
 +
|statement=
 +
<tex>\forall\,j: 1 \le j \le n</tex> в списке <tex>I_j</tex> находится <tex>O(j)</tex> ситуаций.
 +
|proof=
 +
}}
 +
{{Лемма
 +
|about=2
 
|statement=
 
|statement=
 
Пусть <tex>G = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>I_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>.
 
Пусть <tex>G = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>I_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>.
Строка 12: Строка 19:
 
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>.
 
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>.
 
|proof=
 
|proof=
 +
Орагнизуем каждый список разбора <tex>I_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>I_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>.
 +
 +
Покажем, что на каждую ситуацию алгоритм расходует фиксированное количество времени.
 +
 +
Список <tex>I_0</tex> можно построить за фиксированное время.
 +
 +
Рассмотрим <tex>I_j, \, j \ge 0</tex>. Рассмотрим шаги <tex>(4)</tex>, <tex>(5)</tex> и <tex>(6)</tex>.
 +
# На шаге <tex>(4)</tex> исследуется <tex>a_j</tex> и предыдущий список. Для каждой ситуации из <tex>I_{j-1}</tex> с символом <tex>a_j</tex>, расположенным справа от точки, в <tex>I_j</tex> включается некоторая ситуация.  Так как список в <tex>I_{j-1}</tex> можно найти за <tex>O(1)</tex> по символу <tex>a_j</tex>, то на включение каждой ситуации в <tex>I_j</tex> будет потрачено фиксированное время.
 +
#Если применяется шаг <tex>(5)</tex>, то в некотором списке <tex>I_k</tex> для <tex>k \le j</tex> надо просмотреть все ситуации, содержащие <tex>"\cdot B"</tex> для некоторого конкретного <tex>B</tex>. Для каждой такой ситуации в <tex>I_j</tex> включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке.
 +
#Так как размер грамматики фиксирован, то , учитывая первую лемму, получаем, что шаг <tex>(6)</tex> выполняется за <tex>O(j)</tex>.
 +
Таким образом, время работы алгоритма составляет <tex>O(n^2)</tex>.
 
}}
 
}}

Версия 05:08, 6 ноября 2011

Лемма (1):
[math]\forall\,j: 1 \le j \le n[/math] в списке [math]I_j[/math] находится [math]O(j)[/math] ситуаций.
Лемма (2):
Пусть [math]G = (N, \Sigma, P, S)[/math] — однозначная КС-грамматика и [math]a_1 \dots a_n[/math] — цепочка из [math]\Sigma^*[/math]. Тогда алгоритм Эрли пытается включить [math][A \rightarrow \alpha \cdot \beta, i][/math] в [math]I_j[/math] не более одного раза, если [math]\alpha \ne \varepsilon[/math].
Доказательство:
[math]\triangleright[/math]

Ситуацию [math][A \rightarrow \alpha \cdot \beta, i][/math] можно включить в [math]I_j[/math] только на шагах [math](2)[/math], [math](4)[/math], или [math](5)[/math]. Если она включается на шаге [math](4)[/math], то последний символ цепочки [math]\alpha[/math] — терминал, а если на шагах [math](2)[/math] или [math](5)[/math], то — нетерминал. В первом случае результат очевиден. Во втором случае допустим, что [math][A \rightarrow \alpha'B \cdot \beta, i][/math] включается в [math]I_j[/math], когда рассматриваются две различные ситуации [math][B \rightarrow \gamma \cdot, k][/math] и [math][B \rightarrow \delta \cdot, l][/math]. Тогда ситуация [math][A \rightarrow \alpha' \cdot B\beta, i][/math] должна оказаться одновременно в [math]I_k[/math] и в [math]I_l[/math].

  1. Пусть [math]k \ne l[/math]. Тогда по теореме существуют такие [math]\theta_1, \theta_2, \theta_3[/math] и [math]\theta_4[/math], что [math]S \Rightarrow^* \theta_1 A \theta_2 \Rightarrow \theta_1 \alpha' B \beta \theta_2 \Rightarrow^* a_1 \dots a_n[/math] и [math]S \Rightarrow^* \theta_3 A \theta_4 \Rightarrow \theta_3 \alpha' B \beta \theta_4 \Rightarrow^* a_1 \dots a_n[/math]. Но в первом выводе [math]\theta_1 \alpha' \Rightarrow^* a_1 \dots a_k[/math], а во втором [math]\theta_1 \alpha' \Rightarrow^* a_1 \dots a_l[/math]. Тогда для цепочки [math]a_1 \dots a_n[/math] существуют два разных дерева вывода, в которых [math]a_{i+1} \dots a_j[/math] выводится из [math]\alpha' B[/math] двумя разными способами.
  2. Пусть [math]k = l[/math]. Тогда [math]\gamma \ne \delta[/math]. Тогда, так как [math][B \rightarrow \gamma \cdot, k] \in I_j[/math] и [math][B \rightarrow \delta \cdot, k] \in I_j[/math], то [math]\gamma \Rightarrow a_{k+1} \dots a_j[/math] и [math]\delta \Rightarrow a_{k+1} \dots a_j[/math], то есть [math]a_{k+1} \dots a_j[/math] выводится двумя разными способами.
[math]\triangleleft[/math]
Теорема:
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины [math]n[/math] составляет [math]O(n^2)[/math].
Доказательство:
[math]\triangleright[/math]

Орагнизуем каждый список разбора [math]I_j[/math] таким образом, чтобы по любому символу [math]x \in \Sigma \cup N[/math], можно было за [math]O(1)[/math] получить список тех и только тех ситуаций, содержащихся в [math]I_j[/math], которые имеют вид [math][A \rightarrow \alpha \cdot x \beta, j][/math].

Покажем, что на каждую ситуацию алгоритм расходует фиксированное количество времени.

Список [math]I_0[/math] можно построить за фиксированное время.

Рассмотрим [math]I_j, \, j \ge 0[/math]. Рассмотрим шаги [math](4)[/math], [math](5)[/math] и [math](6)[/math].

  1. На шаге [math](4)[/math] исследуется [math]a_j[/math] и предыдущий список. Для каждой ситуации из [math]I_{j-1}[/math] с символом [math]a_j[/math], расположенным справа от точки, в [math]I_j[/math] включается некоторая ситуация. Так как список в [math]I_{j-1}[/math] можно найти за [math]O(1)[/math] по символу [math]a_j[/math], то на включение каждой ситуации в [math]I_j[/math] будет потрачено фиксированное время.
  2. Если применяется шаг [math](5)[/math], то в некотором списке [math]I_k[/math] для [math]k \le j[/math] надо просмотреть все ситуации, содержащие [math]"\cdot B"[/math] для некоторого конкретного [math]B[/math]. Для каждой такой ситуации в [math]I_j[/math] включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке.
  3. Так как размер грамматики фиксирован, то , учитывая первую лемму, получаем, что шаг [math](6)[/math] выполняется за [math]O(j)[/math].
Таким образом, время работы алгоритма составляет [math]O(n^2)[/math].
[math]\triangleleft[/math]