Материал из Викиконспекты
|
|
Строка 31: |
Строка 31: |
| Таким образом, время работы алгоритма составляет <tex>O(n^2)</tex>. | | Таким образом, время работы алгоритма составляет <tex>O(n^2)</tex>. |
| }} | | }} |
| + | ==Литература== |
| + | *А. Ахо, Дж. Ульман. Теория синтакического анализа, перевода и компиляции. Том 1. Синтактический анализ. |
Версия 05:17, 6 ноября 2011
Лемма (1): |
[math]\forall\,j: 1 \le j \le n[/math] в списке [math]I_j[/math] находится [math]O(j)[/math] ситуаций. |
Лемма (2): |
Пусть [math]G = (N, \Sigma, P, S)[/math] — однозначная КС-грамматика и [math]a_1 \dots a_n[/math] — цепочка из [math]\Sigma^*[/math]. Тогда алгоритм Эрли пытается включить [math][A \rightarrow \alpha \cdot \beta, i][/math] в [math]I_j[/math] не более одного раза, если [math]\alpha \ne \varepsilon[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Ситуацию [math][A \rightarrow \alpha \cdot \beta, i][/math] можно включить в [math]I_j[/math] только на шагах [math](2)[/math], [math](4)[/math], или [math](5)[/math]. Если она включается на шаге [math](4)[/math], то последний символ цепочки [math]\alpha[/math] — терминал, а если на шагах [math](2)[/math] или [math](5)[/math], то — нетерминал. В первом случае результат очевиден. Во втором случае допустим, что [math][A \rightarrow \alpha'B \cdot \beta, i][/math] включается в [math]I_j[/math], когда рассматриваются две различные ситуации [math][B \rightarrow \gamma \cdot, k][/math] и [math][B \rightarrow \delta \cdot, l][/math]. Тогда ситуация [math][A \rightarrow \alpha' \cdot B\beta, i][/math] должна оказаться одновременно в [math]I_k[/math] и в [math]I_l[/math].
- Пусть [math]k \ne l[/math]. Тогда по теореме существуют такие [math]\theta_1, \theta_2, \theta_3[/math] и [math]\theta_4[/math], что [math]S \Rightarrow^* \theta_1 A \theta_2 \Rightarrow \theta_1 \alpha' B \beta \theta_2 \Rightarrow^* a_1 \dots a_n[/math] и [math]S \Rightarrow^* \theta_3 A \theta_4 \Rightarrow \theta_3 \alpha' B \beta \theta_4 \Rightarrow^* a_1 \dots a_n[/math]. Но в первом выводе [math]\theta_1 \alpha' \Rightarrow^* a_1 \dots a_k[/math], а во втором [math]\theta_1 \alpha' \Rightarrow^* a_1 \dots a_l[/math]. Тогда для цепочки [math]a_1 \dots a_n[/math] существуют два разных дерева вывода, в которых [math]a_{i+1} \dots a_j[/math] выводится из [math]\alpha' B[/math] двумя разными способами.
- Пусть [math]k = l[/math]. Тогда [math]\gamma \ne \delta[/math]. Тогда, так как [math][B \rightarrow \gamma \cdot, k] \in I_j[/math] и [math][B \rightarrow \delta \cdot, k] \in I_j[/math], то [math]\gamma \Rightarrow a_{k+1} \dots a_j[/math] и [math]\delta \Rightarrow a_{k+1} \dots a_j[/math], то есть [math]a_{k+1} \dots a_j[/math] выводится двумя разными способами.
|
[math]\triangleleft[/math] |
Теорема: |
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины [math]n[/math] составляет [math]O(n^2)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Орагнизуем каждый список разбора [math]I_j[/math] таким образом, чтобы по любому символу [math]x \in \Sigma \cup N[/math], можно было за [math]O(1)[/math] получить список тех и только тех ситуаций, содержащихся в [math]I_j[/math], которые имеют вид [math][A \rightarrow \alpha \cdot x \beta, j][/math].
Покажем, что на каждую ситуацию алгоритм расходует фиксированное количество времени.
Список [math]I_0[/math] можно построить за фиксированное время.
Рассмотрим [math]I_j, \, j \ge 0[/math]. Рассмотрим шаги [math](4)[/math], [math](5)[/math] и [math](6)[/math].
- На шаге [math](4)[/math] исследуется [math]a_j[/math] и предыдущий список. Для каждой ситуации из [math]I_{j-1}[/math] с символом [math]a_j[/math], расположенным справа от точки, в [math]I_j[/math] включается некоторая ситуация. Так как список в [math]I_{j-1}[/math] можно найти за [math]O(1)[/math] по символу [math]a_j[/math], то на включение каждой ситуации в [math]I_j[/math] будет потрачено фиксированное время.
- Если применяется шаг [math](5)[/math], то в некотором списке [math]I_k[/math] для [math]k \le j[/math] надо просмотреть все ситуации, содержащие [math]"\cdot B"[/math] для некоторого конкретного [math]B[/math]. Для каждой такой ситуации в [math]I_j[/math] включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке.
- Так как размер грамматики фиксирован, то , учитывая первую лемму, получаем, что шаг [math](6)[/math] выполняется за [math]O(j)[/math].
Таким образом, время работы алгоритма составляет [math]O(n^2)[/math]. |
[math]\triangleleft[/math] |
Литература
- А. Ахо, Дж. Ульман. Теория синтакического анализа, перевода и компиляции. Том 1. Синтактический анализ.