Регулярные языки: два определения и их эквивалентность — различия между версиями
(fixed) |
(fixed) |
||
| Строка 37: | Строка 37: | ||
Для этого проверим, выполняются ли свойства надреза на нем: | Для этого проверим, выполняются ли свойства надреза на нем: | ||
| − | # <tex> R_0 \subset Reg </tex> - следует из определения <tex> Reg </tex>. | + | # <tex> R_0 \subset Reg </tex> {{---}} выполнено (следует из определения <tex> Reg </tex>). |
# Рассмотрим <tex> L_1, L_2 \in Reg </tex>. Так как <tex>Reg = \bigcup\limits_{i=0}^{\infty}R_i</tex> , то <tex> \exists i </tex>, что <tex> L_1\in R_i </tex> и <tex> \exists j </tex> , что <tex> L_2 \in R_j </tex>. Тогда из определения <tex> Reg </tex>, следует, что <tex> L_1L_2 \in R_{max(i, j)+1}, L_1 \cup L_2\in R_{max(i, j)+1}, L_1^* \in R_{i + 1}</tex>. Так как <tex>Reg = \bigcup\limits_{i=0}^{\infty}R_i</tex>, то получаем, что <tex> L_1L_2 \in Reg, L_1 \cup L_2\in Reg, L_1^* \in Reg </tex>. Следовательно второе свойство так же выполнено. | # Рассмотрим <tex> L_1, L_2 \in Reg </tex>. Так как <tex>Reg = \bigcup\limits_{i=0}^{\infty}R_i</tex> , то <tex> \exists i </tex>, что <tex> L_1\in R_i </tex> и <tex> \exists j </tex> , что <tex> L_2 \in R_j </tex>. Тогда из определения <tex> Reg </tex>, следует, что <tex> L_1L_2 \in R_{max(i, j)+1}, L_1 \cup L_2\in R_{max(i, j)+1}, L_1^* \in R_{i + 1}</tex>. Так как <tex>Reg = \bigcup\limits_{i=0}^{\infty}R_i</tex>, то получаем, что <tex> L_1L_2 \in Reg, L_1 \cup L_2\in Reg, L_1^* \in Reg </tex>. Следовательно второе свойство так же выполнено. | ||
Версия 06:21, 7 ноября 2011
Регулярные языки: два определения и их эквивалентность
| Определение: |
| Регулярный язык над алфавитом — язык, который может быть получен из букв алфавита при помощи последовательных применений операций объединения, конкатенации или итерации и никаких других, т.е.:
Обозначим Определим через : . Тогда: . |
| Определение: |
| Пусть задан алфавит .
Множество будем называть надрезом, если:
|
| Теорема: |
Определения 1 и 2 эквивалентны. |
| Доказательство: |
|
Докажем, что и . По определению .
Рассмотрим любое множество и любой надрез : (следует из определения и определения надреза). Докажем, что является надрезом. Для этого проверим, выполняются ли свойства надреза на нем:
|
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)