Обход в ширину — различия между версиями
Sementry (обсуждение | вклад) м (Отмена правки 13299 участника Sementry (обсуждение)(или не бред?)) |
Sementry (обсуждение | вклад) м (кажется, теперь все правильно) |
||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
− | '''Обход в ширину''' ('''Поиск в ширину, BFS''', '''Breadth-first search''') — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами. | + | '''Обход в ширину''' ('''Поиск в ширину''', '''BFS''', '''Breadth-first search''') — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами. |
== Алгоритм == | == Алгоритм == | ||
Строка 14: | Строка 14: | ||
=== Анализ времени работы === | === Анализ времени работы === | ||
− | Оценим время работы для входного графа <tex>G = (V, E)</tex>. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют <tex> O(1) </tex> времени, так что общее время работы с очередью составляет <tex> O(|V|) </tex> операций. Для каждой вершины <tex> v </tex> рассматривается не более <tex> deg\ v </tex> ребер, инцидентных ей. Так как <tex> \ | + | Оценим время работы для входного графа <tex>G = (V, E)</tex>. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют <tex> O(1) </tex> времени, так что общее время работы с очередью составляет <tex> O(|V|) </tex> операций. Для каждой вершины <tex> v </tex> рассматривается не более <tex> deg\ v </tex> ребер, инцидентных ей. Так как <tex> \sum\limits_{v \in V} deg\ v = 2|E| </tex>, то время, используемое на работу с ребрами, составляет <tex> O(|E|) </tex>. Поэтому общее время работы алгоритма поиска в ширину — <tex> O(|V| + |E|) </tex>. |
=== Корректность === | === Корректность === | ||
Строка 26: | Строка 26: | ||
База: изначально очередь содержит только одну вершину <tex> s </tex> с расстоянием 0, утверждение верно. | База: изначально очередь содержит только одну вершину <tex> s </tex> с расстоянием 0, утверждение верно. | ||
− | Переход: пусть после <tex> l </tex>-ого шага алгоритма очередь содержит <tex> p </tex> вершин с расстоянием <tex> k </tex> и <tex> q </tex> вершин с расстоянием <tex> k + 1 </tex>. Тогда на <tex> l+1 </tex>-ом шаге мы извлечем из очереди одну вершину и добавим в нее все непосещенные(<tex> r </tex> вершин), связанные с ней; расстояние до них, очевидно, будет равно <tex> k + 1 </tex>. У нас останется <tex> p - 1 </tex>(возможно, 0) вершин с расстоянием <tex> k </tex> и <tex> q + r </tex> вершин с расстоянием k + 1, что соответствует нашему инварианту. | + | Переход: пусть после <tex> l </tex>-ого шага алгоритма очередь содержит <tex> p </tex> вершин с расстоянием <tex> k </tex> и <tex> q </tex> вершин с расстоянием <tex> k + 1 </tex>. Тогда на <tex> l+1 </tex>-ом шаге мы извлечем из очереди одну вершину и добавим в нее все непосещенные(<tex> r </tex> вершин), связанные с ней; расстояние до них, очевидно, будет равно <tex> k + 1 </tex>. У нас останется <tex> p - 1 </tex> (возможно, 0) вершин с расстоянием <tex> k </tex> и <tex> q + r </tex> вершин с расстоянием k + 1, что соответствует нашему инварианту. |
}} | }} | ||
Строка 33: | Строка 33: | ||
Алгоритм поиска в ширину в невзвешенном графе находит длины кратчайших путей до всех достижимых вершин. | Алгоритм поиска в ширину в невзвешенном графе находит длины кратчайших путей до всех достижимых вершин. | ||
|proof= | |proof= | ||
− | Допустим, что это не так. Выберем из вершин, для которых кратчайшие пути от <tex> s </tex> найдены некорректно, ту, | + | Допустим, что это не так. Выберем из вершин, для которых кратчайшие пути от <tex> s </tex> найдены некорректно, ту, настоящее расстояние до которой минимально. Пусть это вершина <tex> u </tex>, и она имеет своим предком в дереве обхода в ширину <tex> v </tex>, а предок в кратчайшем пути до <tex> u </tex> — вершина <tex> w </tex>. |
− | + | Так как <tex> w </tex> — предок <tex> u </tex> в кратчайшем пути, то <tex> \rho(s, u) = \rho(s, w) + 1 > \rho(s, w) </tex>, и расстояние до w найдено верно, <tex> \rho(s, w) = d[w] </tex>. Значит, <tex> \rho(s, u) = d[w] + 1 </tex>. | |
− | + | Так как <tex> v </tex> — предок <tex> u </tex> в дереве обхода в ширину, то <tex> d[u] = d[v] + 1 </tex>. | |
+ | |||
+ | Расстояние до <tex> u </tex> найдено некорректно, поэтому <tex> \rho(s, u) < d[u] </tex>. Подставляя сюда два последних равенства, получаем <tex> d[w] + 1 < d[v] + 1 </tex>, то есть, <tex> d[w] < d[v] </tex>. Из ранее доказанной леммы следует, что в этом случае вершина <tex> w </tex> попала в очередь и была обработана раньше, чем <tex> v </tex>. Но она соединена с <tex> u </tex>, значит, <tex> v </tex> не может быть предком <tex> u </tex> в дереве обхода в ширину, мы пришли к противоречию, следовательно, найденные расстояния до всех вершин являются кратчайшими. | ||
}} | }} | ||
Версия 07:37, 21 ноября 2011
Эта статья находится в разработке!
Обход в ширину (Поиск в ширину, BFS, Breadth-first search) — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами.
Содержание
Алгоритм
Общая идея
Пусть задан невзвешенный граф
, в котором выделена исходная вершина . Для алгоритма нам потребуются очередь, которая сначала содержит только , и множество посещенных вершин , которое изначально тоже содержит только . На каждом шаге алгоритм вынимает из начала очереди вершину, рассматривает все исходящие из нее ребра и добавляет все связанные с ней непосещенные вершины в и в конец очереди. Если очередь пуста, то алгоритм завершает работу.Поиск в ширину также может построить дерево поиска в ширину. Изначально оно состоит из одного корня
. Когда мы добавляем непосещенную вершину в очередь, то добавляем ее и ребро, по которому мы до нее дошли, в дерево. Поскольку каждая вершина может быть посещена не более одного раза, она имеет не более одного родителя. После окончания работы алгоритма для каждой достижимой из вершины путь в дереве поиска в ширину соответствует кратчайшему пути от до в .Также можно для каждой вершины
считать длину этого пути, равную . Можно считать, что для непосещенных вершин эта длина бесконечно велика. Тогда на каждом шаге длина пути до равна , если посещена и в противном случае. Отсюда следует, что если на каждом шаге обновлять длины путей, то информация о множестве является избыточной, и его можно не хранить.Анализ времени работы
Оценим время работы для входного графа
. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют времени, так что общее время работы с очередью составляет операций. Для каждой вершины рассматривается не более ребер, инцидентных ей. Так как , то время, используемое на работу с ребрами, составляет . Поэтому общее время работы алгоритма поиска в ширину — .Корректность
Утверждение: |
В алгоритме поиска в ширину очередь всегда содержит сначала некоторое количество вершин с расстоянием k, а потом некоторое количество вершин с расстоянием k + 1(возможно, нулевое). |
Докажем это утверждение индукцией по числу выполненных алгоритмом шагов. База: изначально очередь содержит только одну вершину Переход: пусть после с расстоянием 0, утверждение верно. -ого шага алгоритма очередь содержит вершин с расстоянием и вершин с расстоянием . Тогда на -ом шаге мы извлечем из очереди одну вершину и добавим в нее все непосещенные( вершин), связанные с ней; расстояние до них, очевидно, будет равно . У нас останется (возможно, 0) вершин с расстоянием и вершин с расстоянием k + 1, что соответствует нашему инварианту. |
Теорема: |
Алгоритм поиска в ширину в невзвешенном графе находит длины кратчайших путей до всех достижимых вершин. |
Доказательство: |
Допустим, что это не так. Выберем из вершин, для которых кратчайшие пути от найдены некорректно, ту, настоящее расстояние до которой минимально. Пусть это вершина , и она имеет своим предком в дереве обхода в ширину , а предок в кратчайшем пути до — вершина .Так как — предок в кратчайшем пути, то , и расстояние до w найдено верно, . Значит, .Так как Расстояние до — предок в дереве обхода в ширину, то . найдено некорректно, поэтому . Подставляя сюда два последних равенства, получаем , то есть, . Из ранее доказанной леммы следует, что в этом случае вершина попала в очередь и была обработана раньше, чем . Но она соединена с , значит, не может быть предком в дереве обхода в ширину, мы пришли к противоречию, следовательно, найденные расстояния до всех вершин являются кратчайшими. |
Реализация
В приведенном ниже псевдокоде
- входной граф, - выделенная вершина, Q - очередь. Множество не хранится, вместо него использются расстояния в дереве обхода в ширину; расстояние от до вершины , вычисляемое алгоритмом, хранится в поле .BFS(, ) 1 d[s] 0 2 Q 3 Q.push(s) 4 while Q 5 do u Q.pop 6 for v: uv E 7 do if d[v] = 8 then d[v] d[u] + 1 9 Q.push(v)
Ссылки
Литература
- Томас Х. Кормен и др. Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1