Существенно неоднозначные языки — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Неоднозначные грамматики)
Строка 1: Строка 1:
 
== Неоднозначные грамматики ==
 
== Неоднозначные грамматики ==
Неоднозначной грамматикой называется грамматика, по которой для одной цепочки существует более одного дерева разбора.
+
Неоднозначной грамматикой называется грамматика, если существует слово, у которого существует 2 различных дерева разбора.
  
 
===Пример:===
 
===Пример:===
Рассмотрим грамматику <tex>E \rightarrow E + E | E * E</tex> и выводимую цепочку<tex>E + E * E</tex>. Ее можно вывести двумя способами:
+
Рассмотрим грамматику <tex>E \rightarrow E + E | E * E</tex> и выводимое слово <tex>E + E * E</tex>. Его можно вывести двумя способами:
 
   
 
   
 
<tex>E \Rightarrow E + E \Rightarrow E + E * E</tex>
 
<tex>E \Rightarrow E + E \Rightarrow E + E * E</tex>
Строка 9: Строка 9:
 
<tex>E \Rightarrow E * E \Rightarrow E + E * E</tex>
 
<tex>E \Rightarrow E * E \Rightarrow E + E * E</tex>
 
   
 
   
Эта граматика неоднозначна.
+
Эта грамматика неоднозначна.
  
 
== Существенно неоднозначные языки ==
 
== Существенно неоднозначные языки ==

Версия 00:40, 22 ноября 2011

Неоднозначные грамматики

Неоднозначной грамматикой называется грамматика, если существует слово, у которого существует 2 различных дерева разбора.

Пример:

Рассмотрим грамматику [math]E \rightarrow E + E | E * E[/math] и выводимое слово [math]E + E * E[/math]. Его можно вывести двумя способами:

[math]E \Rightarrow E + E \Rightarrow E + E * E[/math]

[math]E \Rightarrow E * E \Rightarrow E + E * E[/math]

Эта грамматика неоднозначна.

Существенно неоднозначные языки

Язык называется существенно неоднозначным, если любая его грамматика неоднозначна. Пример такого языка: [math]0^a 1^b 2^c[/math], где либо [math]a=b[/math], либо [math]b=c[/math] Докажем, что для любой грамматики [math]\Gamma[/math] [math]\exists k: 0^k 1^k 2^k[/math] имеет хотя бы 2 дерева разбора в грамматике [math]\Gamma[/math].


Возьмем k и рассмотрим слово [math]0^k 1^k 2^{k+k!}[/math], где пометим первые k нулей.

По лемме Огдена можно разбить данное слово на 5 частей.

Uvwxy.png

По условию леммы есть нетерминал A - такой, что с помощью него можно породить слово [math]0^{k+k!} 1^{k+k!} 2^{k+k!}[/math].

Tree2.png [math]i = \frac{n!}{t} + 1[/math]

Аналогичные рассуждения справедливы для слова [math]0^{k+k!} 1^k 2^k[/math], в котором отмечены все двойки. Пусть в нем повторяющийся нетерминал B. Tree3.png [math]i = \frac{n!}{t} + 1[/math]

Очевидно, что А и В - разные деревья и одно не является потомком другого.

Tree5.png

Тогда если дерево разбора в обоих случаях одинаково, то оно порождает слово вида [math]0^{k+k!+s} 1^{k+k!+s+r} 2^{k+k!+r}[/math], что не так.

В результате мы имеем 2 дерева разбора для одного слова. Значит язык существенно не однозначен.

Теорема:
Для языка принимаемого ДМП-автоматом существует однозначная КС-грамматика