Динамическое программирование — различия между версиями
Borisov (обсуждение | вклад) |
Borisov (обсуждение | вклад) |
||
| Строка 6: | Строка 6: | ||
[[Файл:ST.jpg]] | [[Файл:ST.jpg]] | ||
| − | Префикс оптимального пути | + | Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Требуется дойти до $T$. Оптимальный путь проходит через $U$. Пусть префикс $dU$ неоптимальный. Это значит, что есть более оптимальный путь. Тогда заменим этот префикс на более оптимальный путь до $U$, а путь $U \rightsquigarrow T$ добавим в конец. Получится более оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. |
| − | Требуется дойти до $T$. Оптимальный путь проходит через $U$. | ||
| − | Пусть префикс $dU$ неоптимальный. Это значит, что есть более оптимальный путь. Тогда заменим этот префикс на более оптимальный путь до $U$, | ||
| − | а путь | ||
</wikitex> | </wikitex> | ||
Версия 07:42, 23 ноября 2011
<wikitex>
Определение
| Определение: |
| Принцип оптимальности для подзадач – важнейшее свойство задачи, формулирующееся следующим образом: «Если есть оптимальное решение для некоторой подзадачи, которая возникает в процессе решения задачи, то именно его нужно использовать для решения задачи в целом» |
Рассмотрим принцип оптимальности для динамического программирования на префиксе:
Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Требуется дойти до $T$. Оптимальный путь проходит через $U$. Пусть префикс $dU$ неоптимальный. Это значит, что есть более оптимальный путь. Тогда заменим этот префикс на более оптимальный путь до $U$, а путь $U \rightsquigarrow T$ добавим в конец. Получится более оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. </wikitex>
Ссылки
- Лекция 10.11.2011
- Жадный алгоритм
- Т. Кормен. «Алгоритмы. Построение и анализ» (Глава 15.3)