Задача о наибольшей возрастающей подпоследовательности — различия между версиями
Kseniya (обсуждение | вклад) |
Kseniya (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
'''Наибольшая возрастающая подпоследовательность (НВП)''' (''англ''. Longest increasing subsequence - LIS) строки <tex> x </tex> длины <tex> n </tex> - это последовательность <tex> x[i_1] < x[i_2] < \dots < x[i_k] </tex> символов строки <tex> x </tex> таких, что <tex> i_1 < i_2 < \dots < i_k, 1 \le i_j \le n </tex>, причем <tex> k </tex> - наибольшее из возможных. | '''Наибольшая возрастающая подпоследовательность (НВП)''' (''англ''. Longest increasing subsequence - LIS) строки <tex> x </tex> длины <tex> n </tex> - это последовательность <tex> x[i_1] < x[i_2] < \dots < x[i_k] </tex> символов строки <tex> x </tex> таких, что <tex> i_1 < i_2 < \dots < i_k, 1 \le i_j \le n </tex>, причем <tex> k </tex> - наибольшее из возможных. | ||
}} | }} | ||
− | + | ====Постановка задачи==== | |
− | + | Дан массив из <tex>n</tex> чисел <tex>a[0...n - 1]</tex>. Требуется найти в этом массиве наибольшую возрастающую подпоследовательность. | |
− | ==== Решение за время < | + | ==== Решение за время O(N<sup>2</sup>) ==== |
Строим таблицу <tex> a[1 \dots n] </tex>. Каждый её элемент <tex> a[i] </tex> - длина наибольшей возрастающей подпоследовательности, оканчивающейся точно в позиции <tex> i </tex>. Если мы построим эту таблицу, то ответ к задаче - наибольшее число из этой таблицы. | Строим таблицу <tex> a[1 \dots n] </tex>. Каждый её элемент <tex> a[i] </tex> - длина наибольшей возрастающей подпоследовательности, оканчивающейся точно в позиции <tex> i </tex>. Если мы построим эту таблицу, то ответ к задаче - наибольшее число из этой таблицы. | ||
Само построение тоже элементарно: <tex> a[i] = \max{(a[j] + 1)} </tex>,для всех <tex> j = 1\dots i-1</tex>, для которых <tex> x[j] < x[i] </tex>. База динамики <tex> a[1] = 1 </tex>. | Само построение тоже элементарно: <tex> a[i] = \max{(a[j] + 1)} </tex>,для всех <tex> j = 1\dots i-1</tex>, для которых <tex> x[j] < x[i] </tex>. База динамики <tex> a[1] = 1 </tex>. | ||
Строка 34: | Строка 34: | ||
Для вывода самой подпоследовательности достаточной пройти по массиву <tex>prev</tex>, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента. | Для вывода самой подпоследовательности достаточной пройти по массиву <tex>prev</tex>, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента. | ||
− | ==== Решение за | + | ==== Решение за O(NlogN) ==== |
Для более быстрого решения данной задачи построим следующую динамику: пусть <tex>d[i](i = 0...n)</tex> - число, на которое оканчивается возрастающая последовательность длины <tex>i</tex>, а если таких чисел несколько - то наименьшее из них. Изначально мы предполагаем, что <tex>d[0] = -</tex><tex>\infty</tex>, а все остальные элементы <tex>d[i] =</tex> <tex>\infty</tex>. | Для более быстрого решения данной задачи построим следующую динамику: пусть <tex>d[i](i = 0...n)</tex> - число, на которое оканчивается возрастающая последовательность длины <tex>i</tex>, а если таких чисел несколько - то наименьшее из них. Изначально мы предполагаем, что <tex>d[0] = -</tex><tex>\infty</tex>, а все остальные элементы <tex>d[i] =</tex> <tex>\infty</tex>. | ||
Заметим два важных свойства этой динамики: <tex>d[i - 1] <= d[i]</tex>, для всех <tex>i = 1...n</tex>. А так же что каждый элемент <tex>a[i]</tex> обновляет максимум один элемент <tex>d[j]</tex>. Это означает, что при обработке очередного <tex>a[i]</tex>, мы можем за <tex> O(n\cdot\log n) </tex> c помощью двоичного поиска в массиве <tex>d[]</tex> найти первое число, которое строго больше текущего <tex>a[i]</tex> и обновить его. | Заметим два важных свойства этой динамики: <tex>d[i - 1] <= d[i]</tex>, для всех <tex>i = 1...n</tex>. А так же что каждый элемент <tex>a[i]</tex> обновляет максимум один элемент <tex>d[j]</tex>. Это означает, что при обработке очередного <tex>a[i]</tex>, мы можем за <tex> O(n\cdot\log n) </tex> c помощью двоичного поиска в массиве <tex>d[]</tex> найти первое число, которое строго больше текущего <tex>a[i]</tex> и обновить его. |
Версия 02:41, 30 ноября 2011
Определение: |
Наибольшая возрастающая подпоследовательность (НВП) (англ. Longest increasing subsequence - LIS) строки | длины - это последовательность символов строки таких, что , причем - наибольшее из возможных.
Постановка задачи
Дан массив из
чисел . Требуется найти в этом массиве наибольшую возрастающую подпоследовательность.Решение за время O(N2)
Строим таблицу
int a[MaxN]; //maxN - наибольшая возможная длина возрастающей последовательности int prev[maxN]; for i = 0 ... n a[i] = 1; prev[i] = -1; for j = 0 ... i - 1 if(a[j] < a[i]) a[i] = max(a[i], 1 + a[j]); prev[i] = j; int ans = d[0], pos = 0; for i = 0 ... n ans = max(ans, d[i]); pos = i; int it = 0; int lsa[maxN]; // наибольшая возрастающая последовательность
while(pos != -1) //восстанавливаем предка lsa[it] = pos; pos = prev[pos]; it = it + 1; for it - 1 ... 0 // вывод последовательности, начиная с первого элемента write(lsa[it])
Для вывода самой подпоследовательности достаточной пройти по массиву
, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента.Решение за O(NlogN)
Для более быстрого решения данной задачи построим следующую динамику: пусть
int d[maxN]; int pos[maxN];//pos[i] - позиция d[i] в a[i] int prev[maxN]; prev[0] = -1; d[0] = -INF; for i = 0...n d[i] = INF; for i = 0...n int j = binsearch(d, a[i]);//поиск первого числа, строго большего a[i] if(d[j - 1] < a[i] && a[i] < d[j]) d[j] = a[i]; pos[j] = i; prev[i] = pos[d[j - 1]];//предок a[i] - позиция элемента d[j - 1] в исходном массиве a[i] size = max(size, j); int it = size; int ans[size]; while(it != -INF) write(a[prev[it]]);//вывод наибольшей возрастающей последовательности в обратном порядке it = a[prev[it]];