Задача о наибольшей возрастающей подпоследовательности — различия между версиями
Kseniya (обсуждение | вклад) |
Kseniya (обсуждение | вклад) |
||
| Строка 3: | Строка 3: | ||
'''Наибольшая возрастающая подпоследовательность (НВП)''' (''англ''. Longest increasing subsequence - LIS) строки <tex> x </tex> длины <tex> n </tex> - это последовательность <tex> x[i_1] < x[i_2] < \dots < x[i_k] </tex> символов строки <tex> x </tex> таких, что <tex> i_1 < i_2 < \dots < i_k, 1 \le i_j \le n </tex>, причем <tex> k </tex> - наибольшее из возможных. | '''Наибольшая возрастающая подпоследовательность (НВП)''' (''англ''. Longest increasing subsequence - LIS) строки <tex> x </tex> длины <tex> n </tex> - это последовательность <tex> x[i_1] < x[i_2] < \dots < x[i_k] </tex> символов строки <tex> x </tex> таких, что <tex> i_1 < i_2 < \dots < i_k, 1 \le i_j \le n </tex>, причем <tex> k </tex> - наибольшее из возможных. | ||
}} | }} | ||
| − | + | ====Постановка задачи==== | |
| − | + | Дан массив из <tex>n</tex> чисел <tex>a[0...n - 1]</tex>. Требуется найти в этом массиве наибольшую возрастающую подпоследовательность. | |
| − | ==== Решение за время < | + | ==== Решение за время O(N<sup>2</sup>) ==== |
Строим таблицу <tex> a[1 \dots n] </tex>. Каждый её элемент <tex> a[i] </tex> - длина наибольшей возрастающей подпоследовательности, оканчивающейся точно в позиции <tex> i </tex>. Если мы построим эту таблицу, то ответ к задаче - наибольшее число из этой таблицы. | Строим таблицу <tex> a[1 \dots n] </tex>. Каждый её элемент <tex> a[i] </tex> - длина наибольшей возрастающей подпоследовательности, оканчивающейся точно в позиции <tex> i </tex>. Если мы построим эту таблицу, то ответ к задаче - наибольшее число из этой таблицы. | ||
Само построение тоже элементарно: <tex> a[i] = \max{(a[j] + 1)} </tex>,для всех <tex> j = 1\dots i-1</tex>, для которых <tex> x[j] < x[i] </tex>. База динамики <tex> a[1] = 1 </tex>. | Само построение тоже элементарно: <tex> a[i] = \max{(a[j] + 1)} </tex>,для всех <tex> j = 1\dots i-1</tex>, для которых <tex> x[j] < x[i] </tex>. База динамики <tex> a[1] = 1 </tex>. | ||
| Строка 34: | Строка 34: | ||
Для вывода самой подпоследовательности достаточной пройти по массиву <tex>prev</tex>, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента. | Для вывода самой подпоследовательности достаточной пройти по массиву <tex>prev</tex>, начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента. | ||
| − | ==== Решение за | + | ==== Решение за O(NlogN) ==== |
Для более быстрого решения данной задачи построим следующую динамику: пусть <tex>d[i](i = 0...n)</tex> - число, на которое оканчивается возрастающая последовательность длины <tex>i</tex>, а если таких чисел несколько - то наименьшее из них. Изначально мы предполагаем, что <tex>d[0] = -</tex><tex>\infty</tex>, а все остальные элементы <tex>d[i] =</tex> <tex>\infty</tex>. | Для более быстрого решения данной задачи построим следующую динамику: пусть <tex>d[i](i = 0...n)</tex> - число, на которое оканчивается возрастающая последовательность длины <tex>i</tex>, а если таких чисел несколько - то наименьшее из них. Изначально мы предполагаем, что <tex>d[0] = -</tex><tex>\infty</tex>, а все остальные элементы <tex>d[i] =</tex> <tex>\infty</tex>. | ||
Заметим два важных свойства этой динамики: <tex>d[i - 1] <= d[i]</tex>, для всех <tex>i = 1...n</tex>. А так же что каждый элемент <tex>a[i]</tex> обновляет максимум один элемент <tex>d[j]</tex>. Это означает, что при обработке очередного <tex>a[i]</tex>, мы можем за <tex> O(n\cdot\log n) </tex> c помощью двоичного поиска в массиве <tex>d[]</tex> найти первое число, которое строго больше текущего <tex>a[i]</tex> и обновить его. | Заметим два важных свойства этой динамики: <tex>d[i - 1] <= d[i]</tex>, для всех <tex>i = 1...n</tex>. А так же что каждый элемент <tex>a[i]</tex> обновляет максимум один элемент <tex>d[j]</tex>. Это означает, что при обработке очередного <tex>a[i]</tex>, мы можем за <tex> O(n\cdot\log n) </tex> c помощью двоичного поиска в массиве <tex>d[]</tex> найти первое число, которое строго больше текущего <tex>a[i]</tex> и обновить его. | ||
Версия 02:41, 30 ноября 2011
| Определение: |
| Наибольшая возрастающая подпоследовательность (НВП) (англ. Longest increasing subsequence - LIS) строки длины - это последовательность символов строки таких, что , причем - наибольшее из возможных. |
Постановка задачи
Дан массив из чисел . Требуется найти в этом массиве наибольшую возрастающую подпоследовательность.
Решение за время O(N2)
Строим таблицу . Каждый её элемент - длина наибольшей возрастающей подпоследовательности, оканчивающейся точно в позиции . Если мы построим эту таблицу, то ответ к задаче - наибольшее число из этой таблицы.
Само построение тоже элементарно: ,для всех , для которых . База динамики .
Если мы хотим восстановить саму подпоследовательность, то заведем массив предыдущих величин такой, что - предпоследний элемент в НВП, оканчивающейся в элементе с номером . Его значение будет изменяться вместе с изменением соответствующего i-ого элемента матрицы .
int a[MaxN]; //maxN - наибольшая возможная длина возрастающей последовательности
int prev[maxN];
for i = 0 ... n
a[i] = 1;
prev[i] = -1;
for j = 0 ... i - 1
if(a[j] < a[i])
a[i] = max(a[i], 1 + a[j]);
prev[i] = j;
int ans = d[0], pos = 0;
for i = 0 ... n
ans = max(ans, d[i]);
pos = i;
int it = 0;
int lsa[maxN]; // наибольшая возрастающая последовательность
while(pos != -1) //восстанавливаем предка
lsa[it] = pos;
pos = prev[pos];
it = it + 1;
for it - 1 ... 0 // вывод последовательности, начиная с первого элемента
write(lsa[it])
Для вывода самой подпоследовательности достаточной пройти по массиву , начиная с номера того элемента, на котором мы зафиксировали наш ответ lis, и спускаясь по его предыдущим элементам, пока не достигнем -1 в предке очередного элемента.
Решение за O(NlogN)
Для более быстрого решения данной задачи построим следующую динамику: пусть - число, на которое оканчивается возрастающая последовательность длины , а если таких чисел несколько - то наименьшее из них. Изначально мы предполагаем, что , а все остальные элементы .
Заметим два важных свойства этой динамики: , для всех . А так же что каждый элемент обновляет максимум один элемент . Это означает, что при обработке очередного , мы можем за c помощью двоичного поиска в массиве найти первое число, которое строго больше текущего и обновить его.
Для восстановления ответа будем поддерживать заполнение двух массивов: и . В будем хранить позицию в , а в - позицию предыдущего элемента для .
int d[maxN];
int pos[maxN];//pos[i] - позиция d[i] в a[i]
int prev[maxN];
prev[0] = -1;
d[0] = -INF;
for i = 0...n
d[i] = INF;
for i = 0...n
int j = binsearch(d, a[i]);//поиск первого числа, строго большего a[i]
if(d[j - 1] < a[i] && a[i] < d[j])
d[j] = a[i];
pos[j] = i;
prev[i] = pos[d[j - 1]];//предок a[i] - позиция элемента d[j - 1] в исходном массиве a[i]
size = max(size, j);
int it = size;
int ans[size];
while(it != -INF)
write(a[prev[it]]);//вывод наибольшей возрастающей последовательности в обратном порядке
it = a[prev[it]];