Эйлеровость графов — различия между версиями
(→Следствие) |
|||
Строка 43: | Строка 43: | ||
}} | }} | ||
− | + | '''Следствие''' | |
В графе <tex>G = (V, E) </tex> существует эйлеров путь тогда и только тогда, когда: | В графе <tex>G = (V, E) </tex> существует эйлеров путь тогда и только тогда, когда: |
Версия 07:43, 30 ноября 2011
Содержание
Эйлеров обход
Определение: |
Эйлеров обход - обход графа, посещающий эйлеров путь. |
Эйлеров путь
Определение: |
Эйлеровым путем в графе называется путь, который проходит по каждому ребру, причем ровно один раз. |
Эйлеров цикл
Определение: |
Эйлеров цикл - эйлеров путь, который является циклом. |
Эйлеров граф
Определение: |
Граф называется эйлеровым, если он содержит эйлеров цикл. Граф, содержащий эйлеров путь, не являющийся циклом, называют полуэйлеровым. |
Критерий эйлеровости
Необходимое условия:
1. Количество вершин нечетной степени не превосходит двух.
2. Все компоненты связности кроме, может быть одной, не имеют ребер.
Теорема: |
В графе существует эйлеров цикл тогда и только тогда, когда:
1. Все вершины имеют четную степень. 2. Все компоненты связности кроме, может быть одной, не имеют ребер. |
Доказательство: |
База индукции: Рассмотрим граф цикл существует. При доказано. в котором количество вершин с четной степенью больше нуля. Рассмотрим произвольную вершину . Из нее выходит ребро. Пойдем по нему и будем действовать далее также. Таким образом можно дойти до и найти цикл. Выкинем ребра цикла из графа. Первое условие сохранится. Второе может не выполниться. |
Следствие
В графе
существует эйлеров путь тогда и только тогда, когда:1. Количество вершин с нечетной степенью меньше или равно двум.
2. Все компоненты связности кроме, может быть одной, не имеют ребер. {{ |proof= Язь }}
Ориентированный граф
Теорема: |
Ориентированный почти связный граф является эйлеровым тогда и только тогда, когда входная степень любой вершины равна ее выходной степени. |