Теория сложности (старая трешовая версия) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Лекция 1. Вводная)
(Лекция 1. Вводная)
Строка 4: Строка 4:
 
*'''DTIME'''(''f''(''n'')) = <tex>\{ L \mid \exists </tex> машина Тьюринга <tex>m : L(m)=L, Time(m,x) \le f(|x|) \}</tex>, где <tex>|x|</tex> &mdash; длина входа <tex>x</tex>.
 
*'''DTIME'''(''f''(''n'')) = <tex>\{ L \mid \exists </tex> машина Тьюринга <tex>m : L(m)=L, Time(m,x) \le f(|x|) \}</tex>, где <tex>|x|</tex> &mdash; длина входа <tex>x</tex>.
  
*'''DSPACE'''(''f''(''n'')) = <tex>\{ L \mid \exists </tex> машина Тьюринга <tex>m : L(m)=L, Space(m,x) \le f(|x|) \}</tex>, где <tex>|x|</tex> &mdash; длина входа <tex>x</tex>.
+
*'''DSPACE'''(''f''(''n'')) = <tex>\{ L \mid \exists </tex> машина Тьюринга <tex>m : L(m)=L, Space(m,x) \le f(|x|) \}</tex>.
  
Аналогичным образом введем классы '''[[NSPACE]]''' и '''[[NTIME]]''', использующие недетерминированную машину Тьюринга взамен детерминированной.
+
Аналогичным образом введем классы '''[[NSPACE]]''' и '''[[NTIME]]''', использующие недетерминированную машину Тьюринга взамен детерминированной (в течении всего курса префикс '''D''' соответствует детерминизму, а '''N''' &mdash; недетерминизму).
  
 
Рассмотрим и докажем теоремы о емкостной и временной иерархии.
 
Рассмотрим и докажем теоремы о емкостной и временной иерархии.
Строка 16: Строка 16:
 
Через понятия классов '''[[DSPACE]]''', '''[[DTIME]]''', '''[[NSPACE]]''' и '''[[NTIME]]''' будет дано определение многим сложностным классам, в том числе '''[[P]]''' и '''[[NP]]'''.  
 
Через понятия классов '''[[DSPACE]]''', '''[[DTIME]]''', '''[[NSPACE]]''' и '''[[NTIME]]''' будет дано определение многим сложностным классам, в том числе '''[[P]]''' и '''[[NP]]'''.  
  
*Класс '''P''' — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время. Формально: '''P'''=<tex>\bigcup_{i=0}^{\infty}</tex>'''[[DTIME]]'''<tex>(in^i)</tex>
+
Класс '''P''' — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время. Формально:  
*В свою очередь, при разрешении языка из класса '''NP''' используется недетерминированная машина: '''NP'''=<tex>\bigcup_{i=0}^{\infty}</tex> '''NTIME'''<tex>(in^i)</tex>
+
*'''P'''=<tex>\bigcup_{i=0}^{\infty}</tex>'''[[DTIME]]'''<tex>(in^i)</tex>
 +
 
 +
В свою очередь, при разрешении языка из класса '''NP''' используется недетерминированная машина:  
 +
*'''NP'''=<tex>\bigcup_{i=0}^{\infty}</tex> '''NTIME'''<tex>(in^i)</tex>
 +
Дадим определение класса '''NP''' на языке сертификатов
 +
*'''NP'''=<tex>\Sigma_1 = \{L|\exists R(x,y) \in P, p \in Poly | l \in L \Leftrightarrow \exists y, |y| \le p(x) | R(x,y)=1\}</tex> (Первое равенство доказывается в статье '''[[NP]]''')
 +
 
  
 
*[[Класс co-NP]]
 
*[[Класс co-NP]]

Версия 20:25, 2 июня 2010

Лекция 1. Вводная

Начнем курс с введения понятий DTIME и DSPACE.

  • DTIME(f(n)) = [math]\{ L \mid \exists [/math] машина Тьюринга [math]m : L(m)=L, Time(m,x) \le f(|x|) \}[/math], где [math]|x|[/math] — длина входа [math]x[/math].
  • DSPACE(f(n)) = [math]\{ L \mid \exists [/math] машина Тьюринга [math]m : L(m)=L, Space(m,x) \le f(|x|) \}[/math].

Аналогичным образом введем классы NSPACE и NTIME, использующие недетерминированную машину Тьюринга взамен детерминированной (в течении всего курса префикс D соответствует детерминизму, а N — недетерминизму).

Рассмотрим и докажем теоремы о емкостной и временной иерархии.

Через понятия классов DSPACE, DTIME, NSPACE и NTIME будет дано определение многим сложностным классам, в том числе P и NP.

Класс P — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время. Формально:

  • P=[math]\bigcup_{i=0}^{\infty}[/math]DTIME[math](in^i)[/math]

В свою очередь, при разрешении языка из класса NP используется недетерминированная машина:

  • NP=[math]\bigcup_{i=0}^{\infty}[/math] NTIME[math](in^i)[/math]

Дадим определение класса NP на языке сертификатов

  • NP=[math]\Sigma_1 = \{L|\exists R(x,y) \in P, p \in Poly | l \in L \Leftrightarrow \exists y, |y| \le p(x) | R(x,y)=1\}[/math] (Первое равенство доказывается в статье NP)


Практика 1

Лекция 2

Практика 2

Лекция 3

Практика 3

Практика, которой на самом деле не было

Лекция 5

Лекция 6

Практика 6

Лекция 7

Практика 7

Лекция 8

Практика 8

Лекция 9

Лекция 10

Лекция 11

Лекция 12

Лекция 13