Процесс Каратеодори — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} {{todo|t=ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕК...»)
 
Строка 4: Строка 4:
  
 
<tex>(X, \mathcal{R}, \mu) \to (X, 2^X, \mu^*) \to (X, \mathcal{A}, \mu)</tex>
 
<tex>(X, \mathcal{R}, \mu) \to (X, 2^X, \mu^*) \to (X, \mathcal{A}, \mu)</tex>
 +
 +
==Теорема Каратеодори==
  
 
{{Теорема
 
{{Теорема
Строка 64: Строка 66:
  
 
}}
 
}}
 +
 +
 +
==Некоторые свойства полученной меры==
 +
Установим некоторые свойства полученной меры
 +
{{Определение
 +
|definition=Полученная мера <tex>\mu</tex> {{---}} стандартное распространение по Каратеодори меры <tex>m</tex> с полукольца на <tex>\sigma</tex>-алгебру.
 +
}}
 +
 +
{{Определение
 +
|definition=Если <tex>A\in \mathcal{A}</tex>, то <tex>A</tex> {{---}} <tex>\mu</tex>-измеримо.
 +
}}
 +
===Полнота===
 +
{{Утверждение
 +
|statement=Подмножество нульмерного множества само измеримо и нульмерно
 +
|proof=
 +
Пусть <tex>A\subset\mathcal{A}</tex>, <tex>\mu A = 0</tex>, <tex>B\subset A</tex>, <tex>E\subset X</tex>
 +
 +
Проверим, что <tex>\mu^*E\geq \mu^*(E\cap B) - \mu^*(E\cap\bar B)</tex>
 +
 +
<tex>E\cap B \in \mathcal{A}</tex>
 +
 +
Тогда, по монотонности внешней меры, <tex>\mu^*(E\cap B) \leq \mu^*A \leq \mu A = 0</tex>
 +
 +
<tex>E \cap\bar B \subset E</tex>, <tex>\mu^*(E\cap\bar B) \leq \mu^*E</tex>
 +
 +
Значит, неравенство выполняется. Значит, <tex>B\subset A</tex>
 +
 +
По монотонности меры, <tex>\mu B \leq \mu A</tex>. <tex>\mu A = 0 \Rightarrow \mu B = 0</tex>.
 +
}}
 +
Это свойство называется полнотой.
 +
 +
Можно считать, что распространение <tex>m</tex> с <tex>\mathcal{R}</tex> на <tex>\sigma</tex>-алгебру приводит к полной мере.
 +
===Непрерывность(???)===
 +
{{Утверждение
 +
|statement=Пусть <tex>Е \subset X</tex>, <tex>A\subset E\subset B</tex>, <tex>A, B</tex> {{---}} <tex>m</tex>-измеримы, <tex>\mu(B\setminus A) = 0<tex>. Тогда <tex>E \in \mathcal{A}</tex>
 +
|proof=В силу написанного выше ясно, что <tex>E\setminus A\subset B\setminus A</tex>. Последнее множество нульмерно. Значит, по полноте меры, <tex>E\setminus A = 0</tex>, <tex>E\in \mathcal{A}</tex>(<tex>E = A \cup (E\setminus A</tex>)
 +
}}
 +
 +
====Следствие====
 +
{{Утверждение
 +
|about=Критерий <tex>\mu</tex>-измеримости
 +
|statement=Пусть <tex>E\subset X</tex>. Тогда <tex>E</tex>-измеримо <tex>\iff</tex> <tex>\forall\varepsilon>0 \exists (A_\varepsilon, B_\varepsilon), A_\varepsilon, B_\varepsilon\in\mathcal{A} : A_\varepsilon \subset E \subset B_\varepsilon : \mu(A_\varepsilon\setminus B_\varepsilon) < \varepsilon</tex>
 +
|proof=Возьмём <tex>\varepsilon_n = \frac1n</tex>, <tex>A_n = A_{\varepsilon_n}</tex>, <tex>B = B_{\varepsilon_n}</tex>
 +
 +
<tex>A = \bigcup\limits_{n = 1}^{\infty} A_n</tex>, <tex>B = \bigcap\limits_{n = 1}^{\infty} B_n</tex>
 +
 +
Приходим опять к измеримым множествам, ибо <tex>\sigma</tex>-алгебра.
 +
 +
Так как <tex>A_n \subset E \subset B_n</tex>, то <tex>A \subset E \subset B</tex>.
 +
 +
<tex>\forall n : B\setminus A \subset B_n\setminus A_n</tex>
 +
 +
Тогда, по монотонности меры, <tex>\mu(B\setminus A)\leq \mu(B_n\setminus A_n) < \frac1n</tex>.
 +
 +
<tex>n \to \infty \Rightarrow \mu(B\setminus A) = 0</tex>
 +
 +
Мы нашли пару измеримых множеств, между которыми вставлено <tex>E</tex>. <tex>\mu(B\setminus A) = 0</tex>. Значит, по предыдущим фактам, верно.
 +
 +
Обратное верно, так как можно взять <tex>A=B=E</tex>
 +
}}
 +
 +
To be continued...

Версия 22:18, 2 декабря 2011

Эта статья находится в разработке!
Шаблон:Todo

[math](X, \mathcal{R}, \mu) \to (X, 2^X, \mu^*) \to (X, \mathcal{A}, \mu)[/math]

Теорема Каратеодори

Теорема (Каратеодори):
1. [math]\mathcal{R} \subset \mathcal{A}[/math] 2. [math]\mu|_\mathcal{R} = m[/math]
Доказательство:
[math]\triangleright[/math]

Если мы докажем, что [math]\mathcal{R} \subset \mathcal{A}[/math], то есть, любое множество полукольца хорошо разбивает любое другое, то , взяв любое [math]A \in \mathcal{R}[/math], [math]\mu^*A = \mu A[/math], так как [math]\mathcal{R} subset \mathcal{A}[/math]. Но [math]\mu^*[/math] порождена [math]m[/math] ([math]\mu^* |_\mathcal{R} = m[/math]). Но [math]A\in \mathcal{A}[/math], по определению [math]\mu^*[/math], [math]\mu^* A \leq mA \Rightarrow \mu A = mA[/math]

Значит, второй пункт вытекает из первого. Докажем первый пункт.

[math]\forall A \in \mathcal{R}\ \forall E \subset X[/math] нужно, чтобы [math]\mu^* E \geq \mu^*(E\cap A) + \mu^*(E\cap\bar A)[/math]

Надо доказать, для [math]\mu^* E \lt +\infty[/math], обратное — очевидно.

Воспользуемся тем, что [math]\mu^*[/math] порождена [math]m[/math]:

[math]\forall \varepsilon \gt 0\ \exists A_1, A_2 \ldots A_n \ldots \in \mathcal{R} : \bigcup\limits_j A_j \supset E[/math], [math]\sum\limits_j mA_j \lt \mu E + \varepsilon[/math]

Пересекаем это включение с [math]A[/math] (Шаблон:Todo)

[math]E \cap A \subset \bigcap\limits_j(A_j \cap A)[/math]

По аксиомам полукольца, [math]A_j\cap A \in \mathcal{R}[/math].

Значит, мы получили покрытие этого множества элементами полукольца.

Тогда, по определению [math]\mu^*[/math], порождённой [math]m[/math]

[math]\mu^*(E\cap A) \leq \sum\limits_j m(A_j\cap A)[/math]

[math]E\cap\bar A \subset \bigcup\limits_j(A_j\cap\bar A)[/math]. Однако, здесь нет гарантий, что [math]A_j\cap\bar A \in \mathcal{R}[/math].

[math]A_j\cap\bar A = A_j\setminus A = A_j\setminus (A\cap A_j)[/math], [math]A\cap A_j \in \mathcal{R}[/math]

Тогда, по аксиомам полукольца, [math]A_j\setminus (A\cap A_j) = \bigcup\limits_p D_{jp}[/math] — дизъюнктны в [math]\mathcal{R}[/math].

[math]E\cap\bar A \subset \bigcup\limits_j \bigcup\limits_p D_{jp}[/math], все [math]D[/math] — из полукольца.

Значит, [math]E\cap\bar A[/math] покрывается элементами полукольца, так как [math]\mu^*[/math] порождена [math]m[/math].

[math]\mu^*(E\cap\bar A) \leq \sum\limits_j \sum\limits_p mD_{jp}[/math]

[math]A_j = (A_j \cap A) \cup \bigcup\limits_p D_{jp}[/math] — из полукольца.

Таким образом, [math]A_j \in \mathcal{R}[/math] разбивается в дизъюнктное объединение множеств из [math]\mathcal{R}[/math]. Отсюда, по [math]\sigma[/math]-аддитивности меры,

[math]mA_j = m(A\cap A_j) + \sum\limits_p mD_{jp}[/math]

[math]\sum\limits_p mD_{jp} = mA_j - m(A\cap A_j)[/math]

Тогда, [math]\mu^*(E\cap\bar A)\leq \sum(mA_j- m(A\cap A_j))[/math]

Складываем с предыдущим неравенством.

[math]\mu^*(E\cap A) + \mu^*(E\cap\bar A) \leq \sum\limits_j mA_j \lt \mu^*E+\varepsilon[/math]

При [math]\varepsilon \to 0[/math] получаем требуемое неравенство.
[math]\triangleleft[/math]


Некоторые свойства полученной меры

Установим некоторые свойства полученной меры

Определение:
Полученная мера [math]\mu[/math] — стандартное распространение по Каратеодори меры [math]m[/math] с полукольца на [math]\sigma[/math]-алгебру.


Определение:
Если [math]A\in \mathcal{A}[/math], то [math]A[/math][math]\mu[/math]-измеримо.

Полнота

Утверждение:
Подмножество нульмерного множества само измеримо и нульмерно
[math]\triangleright[/math]

Пусть [math]A\subset\mathcal{A}[/math], [math]\mu A = 0[/math], [math]B\subset A[/math], [math]E\subset X[/math]

Проверим, что [math]\mu^*E\geq \mu^*(E\cap B) - \mu^*(E\cap\bar B)[/math]

[math]E\cap B \in \mathcal{A}[/math]

Тогда, по монотонности внешней меры, [math]\mu^*(E\cap B) \leq \mu^*A \leq \mu A = 0[/math]

[math]E \cap\bar B \subset E[/math], [math]\mu^*(E\cap\bar B) \leq \mu^*E[/math]

Значит, неравенство выполняется. Значит, [math]B\subset A[/math]

По монотонности меры, [math]\mu B \leq \mu A[/math]. [math]\mu A = 0 \Rightarrow \mu B = 0[/math].
[math]\triangleleft[/math]

Это свойство называется полнотой.

Можно считать, что распространение [math]m[/math] с [math]\mathcal{R}[/math] на [math]\sigma[/math]-алгебру приводит к полной мере.

Непрерывность(???)

Утверждение:
Пусть [math]Е \subset X[/math], [math]A\subset E\subset B[/math], [math]A, B[/math][math]m[/math]-измеримы, [math]\mu(B\setminus A) = 0\lt tex\gt . Тогда \lt tex\gt E \in \mathcal{A}[/math]
[math]\triangleright[/math]
В силу написанного выше ясно, что [math]E\setminus A\subset B\setminus A[/math]. Последнее множество нульмерно. Значит, по полноте меры, [math]E\setminus A = 0[/math], [math]E\in \mathcal{A}[/math]([math]E = A \cup (E\setminus A[/math])
[math]\triangleleft[/math]

Следствие

Утверждение (Критерий [math]\mu[/math]-измеримости):
Пусть [math]E\subset X[/math]. Тогда [math]E[/math]-измеримо [math]\iff[/math] [math]\forall\varepsilon\gt 0 \exists (A_\varepsilon, B_\varepsilon), A_\varepsilon, B_\varepsilon\in\mathcal{A} : A_\varepsilon \subset E \subset B_\varepsilon : \mu(A_\varepsilon\setminus B_\varepsilon) \lt \varepsilon[/math]
[math]\triangleright[/math]

Возьмём [math]\varepsilon_n = \frac1n[/math], [math]A_n = A_{\varepsilon_n}[/math], [math]B = B_{\varepsilon_n}[/math]

[math]A = \bigcup\limits_{n = 1}^{\infty} A_n[/math], [math]B = \bigcap\limits_{n = 1}^{\infty} B_n[/math]

Приходим опять к измеримым множествам, ибо [math]\sigma[/math]-алгебра.

Так как [math]A_n \subset E \subset B_n[/math], то [math]A \subset E \subset B[/math].

[math]\forall n : B\setminus A \subset B_n\setminus A_n[/math]

Тогда, по монотонности меры, [math]\mu(B\setminus A)\leq \mu(B_n\setminus A_n) \lt \frac1n[/math].

[math]n \to \infty \Rightarrow \mu(B\setminus A) = 0[/math]

Мы нашли пару измеримых множеств, между которыми вставлено [math]E[/math]. [math]\mu(B\setminus A) = 0[/math]. Значит, по предыдущим фактам, верно.

Обратное верно, так как можно взять [math]A=B=E[/math]
[math]\triangleleft[/math]

To be continued...