Вычислимые функции — различия между версиями
м (→Свойства вычислимой функции) |
|||
Строка 19: | Строка 19: | ||
|statement = <tex>f</tex> — вычислимая функция. Тогда <tex>D(f)</tex> — [[Перечислимые_языки|перечислимое]] множество, где <tex>D(f)</tex> — область определения функции <tex>f</tex>. | |statement = <tex>f</tex> — вычислимая функция. Тогда <tex>D(f)</tex> — [[Перечислимые_языки|перечислимое]] множество, где <tex>D(f)</tex> — область определения функции <tex>f</tex>. | ||
|proof = | |proof = | ||
+ | Для доказательства достаточно написать полуразрешающую программу. | ||
p(x) | p(x) | ||
f(x) | f(x) | ||
Строка 27: | Строка 28: | ||
|statement = <tex>f</tex> — вычислимая функция. Тогда <tex>E(f)</tex> — перечислимое множество, где <tex>E(f)</tex> — область изменения функции <tex>f</tex>; | |statement = <tex>f</tex> — вычислимая функция. Тогда <tex>E(f)</tex> — перечислимое множество, где <tex>E(f)</tex> — область изменения функции <tex>f</tex>; | ||
|proof = | |proof = | ||
− | + | Для доказательства достаточно написать полуразрешающую программу. | |
+ | p(x) | ||
'''for''' <tex>y \in D(f)</tex> | '''for''' <tex>y \in D(f)</tex> | ||
'''if''' x == f(y) | '''if''' x == f(y) | ||
Строка 36: | Строка 38: | ||
|statement = <tex>f</tex> — вычислимая функция. <tex>f(X)</tex> — перечислимое множество, где <tex>X</tex> — перечислимое множество. | |statement = <tex>f</tex> — вычислимая функция. <tex>f(X)</tex> — перечислимое множество, где <tex>X</tex> — перечислимое множество. | ||
|proof = | |proof = | ||
+ | Для доказательства достаточно написать полуразрешающую программу. | ||
p(x) | p(x) | ||
'''for''' <tex>y \in D(f) \cap X</tex> | '''for''' <tex>y \in D(f) \cap X</tex> | ||
Строка 45: | Строка 48: | ||
|statement = <tex>f</tex> — вычислимая функция. <tex>f^{-1}(X)</tex> — перечислимое множество, где <tex>X</tex> — [[Разрешимые_(рекурсивные)_языки|разрешимое множество]]. | |statement = <tex>f</tex> — вычислимая функция. <tex>f^{-1}(X)</tex> — перечислимое множество, где <tex>X</tex> — [[Разрешимые_(рекурсивные)_языки|разрешимое множество]]. | ||
|proof = | |proof = | ||
+ | Для доказательства достаточно написать полуразрешающую программу. | ||
}} | }} | ||
{{Утверждение | {{Утверждение | ||
− | |statement = <tex>f</tex> — вычислимая функция. <tex>f^{-1}(X)</tex> — перечислимое множество, где <tex>X</tex> — перечислимое множество | + | |statement = <tex>f</tex> — вычислимая функция. <tex>f^{-1}(X)</tex> — перечислимое множество, где <tex>X</tex> — перечислимое множество. |
|proof = | |proof = | ||
+ | Для доказательства достаточно написать полуразрешающую программу. | ||
}} | }} | ||
+ | |||
== Литература == | == Литература == | ||
* ''Верещагин Н. К., Шень А.'' '''Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции''' -- М.: МЦНМО, 1999 - С. 176 | * ''Верещагин Н. К., Шень А.'' '''Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции''' -- М.: МЦНМО, 1999 - С. 176 |
Версия 05:18, 10 декабря 2011
Определение: |
Функция
| называется вычислимой, если существует программа, вычисляющая функцию . То есть существует такая программа, что:
Замечание
Входами и выходами программ могут быть не только натуральные числа, но и двоичные строки, пары натуральных чисел, конечные последовательности слов и т.п. Поэтому аналогичным образом можно определить понятие вычислимой функции для рациональных чисел.
Примеры вычислимых функций
- Нигде не определённая функция вычислима.
p(x)
return
- , где — рациональное число.
p(x)
return
Свойства вычислимой функции
Утверждение: |
перечислимое множество, где — область определения функции . — вычислимая функция. Тогда — |
Для доказательства достаточно написать полуразрешающую программу. p(x) f(x) return 1Если функция определена на входе , следовательно, . Тогда необходимо вернуть 1. Иначе программа зависнет при вызове . |
Утверждение: |
— вычислимая функция. Тогда — перечислимое множество, где — область изменения функции ; |
Для доказательства достаточно написать полуразрешающую программу. p(x)
for
Так как
if x == f(y)
then return 1
перечислимо, то можно перебрать элементы этого множества. Если программа находит слово, то она возвращает 1. |
Утверждение: |
— вычислимая функция. — перечислимое множество, где — перечислимое множество. |
Для доказательства достаточно написать полуразрешающую программу. p(x)
for
Из
if x == f(y)
then return 1
замкнутости перечислимых языков относительно операции пересечения следует, что элементы множества можно перебрать. Если программа находит слов, то она возвращает 1. |
Утверждение: |
— вычислимая функция. — перечислимое множество, где — |
Для доказательства достаточно написать полуразрешающую программу. |
Утверждение: |
— вычислимая функция. — перечислимое множество, где — перечислимое множество. |
Для доказательства достаточно написать полуразрешающую программу. |
Литература
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции -- М.: МЦНМО, 1999 - С. 176