Использование обхода в глубину для поиска точек сочленения — различия между версиями
(→Алгоритм) |
|||
Строка 18: | Строка 18: | ||
Пусть <tex>tin[u]</tex> - время входа поиска в глубину в вершину <tex>u</tex>. Через <tex>up[u]</tex> обозначим минимум из времени захода в саму вершину <tex>tin[u]</tex>, времен захода в каждую из вершин <tex>p</tex>, являющуюся концом некоторого обратного ребра <tex>(u,p)</tex>, а также из всех значений <tex>up[v]</tex> для каждой вершины <tex>v</tex>, являющейся непосредственным сыном <tex>u</tex> в дереве поиска. | Пусть <tex>tin[u]</tex> - время входа поиска в глубину в вершину <tex>u</tex>. Через <tex>up[u]</tex> обозначим минимум из времени захода в саму вершину <tex>tin[u]</tex>, времен захода в каждую из вершин <tex>p</tex>, являющуюся концом некоторого обратного ребра <tex>(u,p)</tex>, а также из всех значений <tex>up[v]</tex> для каждой вершины <tex>v</tex>, являющейся непосредственным сыном <tex>u</tex> в дереве поиска. | ||
− | Тогда | + | Тогда из вершины <tex>u</tex> или её потомка есть обратное ребро в её предка <tex>\Leftrightarrow \exists</tex> такой сын <tex>v</tex>, что <tex>up[v] < tin[u]</tex>. |
Таким образом, если для текущей вершины <tex>v \ne root \, \exists</tex> непосредственный сын <tex>v</tex>: <tex>up[v] \ge tin[u]</tex>, то вершина <tex>u</tex> является точкой сочленения; в противном случае она точкой сочленения не является. | Таким образом, если для текущей вершины <tex>v \ne root \, \exists</tex> непосредственный сын <tex>v</tex>: <tex>up[v] \ge tin[u]</tex>, то вершина <tex>u</tex> является точкой сочленения; в противном случае она точкой сочленения не является. |
Версия 08:26, 11 декабря 2011
Алгоритм
Дан связный неориентированный граф. Требуется найти все точки сочленения в нем.
Теорема: |
Пусть обхода в глубину, - корень . Вершина - точка сочленения - сын : из или любого потомка вершины нет обратного ребра в предка вершины . - точка сочленения имеет хотя бы двух сыновей в дереве поиска в глубину. - дерево |
Доказательство: |
|
Пусть
- время входа поиска в глубину в вершину . Через обозначим минимум из времени захода в саму вершину , времен захода в каждую из вершин , являющуюся концом некоторого обратного ребра , а также из всех значений для каждой вершины , являющейся непосредственным сыном в дереве поиска.Тогда из вершины
или её потомка есть обратное ребро в её предка такой сын , что .Таким образом, если для текущей вершины
непосредственный сын : , то вершина является точкой сочленения; в противном случае она точкой сочленения не является.Реализация
dfs(, ) Помечаем вершину , как посещенную ++ 0 for ( : из ) if ( родитель ) Переходим к следующей итерации цикла if ( посещено) //v - предок вершины u, uv - обратное ребро else //v - ребенок вершины u ++ dfs( ) if ( >= ) if ( корень) main() ... for ( из ) if ( не посещен) dfs( , -1);
Время работы алгоритма совпадает с временем работы . Он равен
Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.