Циклическое пространство графа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Размерность линейного пространства обобщенных циклов)
Строка 47: Строка 47:
 
<tex> dim(C) = m - n + k </tex>
 
<tex> dim(C) = m - n + k </tex>
 
|proof=
 
|proof=
<tex> dim(C)=dim(Ker(i))=m-Rang(A) </tex>, где <tex> Rang(A) = </tex> максимальное количество ЛНЗ столбцов <tex> A </tex>. Если рассмотреть цикл в <tex> G </tex>, то, из-за того что каждой вершине инцидентно четное число ребер, сумма столбцов соответствующих этим ребрам = 0. Значит, эти столбцы ЛЗ. Отсюда следует, что если любому множеству ребер, содержащих цикл, в соответствие сопоставить набор столбцов из <tex> A </tex>, то он будет ЛЗ. Если же множество ребер не содержит цикл, то набор ЛНЗ (если он ЛЗ, значит коэффициенты взятые из линейной комбинации образуют <tex> x \in C </tex>, значит существует цикл). Максимальное число ребер, которые мы можем выделить из G и которые не содержат цикл <tex>= n - k </tex> (в каждой компоненте связности выделим цикл).  
+
<tex> dim(C)=dim(Ker(i))=m-Rang(A) </tex>, где <tex> Rang(A) = </tex> максимальное количество ЛНЗ столбцов <tex> A </tex>. Если рассмотреть простой цикл <tex>C</tex> в <tex> G </tex>, то из предыдущего доказательства утверждения следует, что сумма столбцов соответствующих этим ребрам равна <tex>0</tex>. Значит, эти столбцы ЛЗ. Отсюда следует, что если любому множеству ребер, содержащих цикл, в соответствие сопоставить набор столбцов из <tex> A </tex>, то он будет ЛЗ. Если же множество ребер не содержит цикл, то набор ЛНЗ (если он ЛЗ, значит коэффициенты взятые из линейной комбинации образуют <tex> x \in C </tex>, значит существует цикл). Максимальное число ребер, которые мы можем выделить из G и которые не содержат цикл <tex>= n - k </tex> (в каждой компоненте связности выделим цикл).  
 
Итого: <tex> dim(C)=m - n + k </tex>
 
Итого: <tex> dim(C)=m - n + k </tex>
 
}}
 
}}

Версия 21:27, 15 декабря 2011

Определение

Пусть [math] m = |E(G)| [/math], [math] n = |V(G)| [/math], [math] k [/math] — количество компонент связности [math] G [/math].

[math] B^t [/math] — линейное пространство, элементами которого являются [math] t [/math]—мерные двоичные вектора и их сложение определено, как сложение по модулю [math] 2 [/math].


Определение:
Циклическое пространство графа[math] C = Ker(I) [/math], где [math] I : B^m \rightarrow B^n [/math] - линейный оператор, сопоставленный матрице инцидентности [math] A [/math] графа [math] G [/math].


Определение:
Обобщенный цикл графа G - элемент линейного пространства [math] C [/math]


Лемма:
Пространство [math] C [/math] изоморфно [math] T [/math], где [math] T [/math]— пространство, элементами которого являются наборы ребер, из которых можно составить несколько простых реберно непересекающихся циклов.
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math] x \in C [/math].

Рассмотрим граф [math] G_1(V_1,E_1) [/math], где [math] E_1 [/math] — множество ребер, таких, что на соответствующих местах вектора [math] x [/math] стоят единицы, а [math] V_1 = V(G) [/math] .

В силу определения обобщенного цикла: [math] \forall v : v \in V_1 ~ deg(v) \equiv 0(mod~2) [/math].

Покажем по индукции, что [math] G [/math] можно декомпозировать на несколько реберно непересекающихся простых циклов. Ведем индукцию по числу ребер. База индукции [math] |E_1(G)|=0 [/math] очевидно выполняется. Рассмотрим [math] G_1 [/math]. [math] \forall v : v \in V_1 ~ deg(v) \equiv 0(mod~2) \Rightarrow |E_1(G)| \gt |V(G)| - 1 \Rightarrow [/math] существует цикл, добавим его в декомпозицию, удалим ребра, принадлежащие ему. В силу того, что четность степеней вершин не изменилась, по предположению индукции декомпозируем оставшийся граф.

Отсюда следует, что каждому обобщенному циклу соответствуют ребра, которые образуют набор реберно непересекающихся простых циклов.

Если рассмотреть набор реберно непересекающихся простых циклов некоторого графа [math]G[/math] и взять все ребра, принадлежащие этим циклам, то им можно сопоставить обобщенный цикл, поставив в соответствующие места [math] x [/math] [math] 1 [/math], во все остальные [math] 0 [/math].

Утверждение:
Если [math]\textbf{C}[/math] — обобщенный цикл, соответствующий простому циклу [math]C[/math] графа [math]G[/math], то [math]I(\textbf{C}) = 0[/math]
[math]\triangleright[/math]

Пусть [math]\textbf{C}[/math] — обобщенный цикл из условия, а [math]C[/math] — соответствующий ему простой цикл.

Тогда [math]I(\textbf{C}) = \bigoplus\limits_{e \in C}c(e)[/math], где [math]c(e)[/math]— столбец в матрице инцидентности графа [math]G[/math], соответствующий ребру [math]e[/math]. Так как каждая вершина в [math]C[/math] имеет степень 2, то для любого [math]i \in \overline{0, |VG| - 1}[/math] верно [math]|\{e \in C: c(e)_i = 1\}| = 2[/math], а значит [math]I(\textbf{C})_i = 1 \oplus 1 = 0[/math]. Таким образом [math]I(\textbf{C}) = 0[/math].
[math]\triangleleft[/math]
В силу линейности оператора [math] I [/math] и того, что [math]I( [/math] простой цикл [math] )=0 [/math], получаем что [math] Ix=0 [/math]
[math]\triangleleft[/math]

Размерность линейного пространства обобщенных циклов

Теорема:
[math] dim(C) = m - n + k [/math]
Доказательство:
[math]\triangleright[/math]

[math] dim(C)=dim(Ker(i))=m-Rang(A) [/math], где [math] Rang(A) = [/math] максимальное количество ЛНЗ столбцов [math] A [/math]. Если рассмотреть простой цикл [math]C[/math] в [math] G [/math], то из предыдущего доказательства утверждения следует, что сумма столбцов соответствующих этим ребрам равна [math]0[/math]. Значит, эти столбцы ЛЗ. Отсюда следует, что если любому множеству ребер, содержащих цикл, в соответствие сопоставить набор столбцов из [math] A [/math], то он будет ЛЗ. Если же множество ребер не содержит цикл, то набор ЛНЗ (если он ЛЗ, значит коэффициенты взятые из линейной комбинации образуют [math] x \in C [/math], значит существует цикл). Максимальное число ребер, которые мы можем выделить из G и которые не содержат цикл [math]= n - k [/math] (в каждой компоненте связности выделим цикл).

Итого: [math] dim(C)=m - n + k [/math]
[math]\triangleleft[/math]

Литература(формулировки другие)

Харари Ф. Теория графов / пер. с англ. — изд. 4-е — М.: Книжный дом «ЛИБРОКОМ», 2009. — с.54. — ISBN 978-5-397-00622-4.