Метод четырёх русских для умножения матриц — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 34: Строка 34:
 
Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>.
 
Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>.
 
Приведем анализ выбора числа <tex>k</tex> для получения оптимальной сложности алгоритма.
 
Приведем анализ выбора числа <tex>k</tex> для получения оптимальной сложности алгоритма.
 +
 +
В силу возрастания функции <tex>f(k) = 2^{2k}k</tex> и убывания функции <tex>g(k) = \frac{n^3}{k}</tex> имеем, что сложность будет оптимальна при таком значении <tex>k</tex>, что <tex>f(k) = g(k)</tex>.
  
 
Таким образом, при подстановке <tex>k = \log n</tex>, получаем итоговую трудоёмкость <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex>
 
Таким образом, при подстановке <tex>k = \log n</tex>, получаем итоговую трудоёмкость <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex>

Версия 03:44, 16 декабря 2011

Постановка задачи

Рассмотрим следующую задачу: «Дано две квадратных матрицы [math]A_{[n \times n]}[/math] и [math]B_{[n \times n]}[/math], состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю [math]2[/math]

Простое решение

Если мы будем считать произведение матриц [math]C = A \cdot B[/math] по определению([math]c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}[/math]), то трудоёмкость алгоритма составит [math]O(n^3)[/math] — каждый из [math]n^2[/math] элементов результирующей матрицы [math]C[/math] вычисляется за время, пропорциональное [math]n[/math].

Сейчас будет показано, как немного уменьшить это время.

Предподсчёт

Воспользуемся следующим приёмом. Возьмём некоторое целое число [math]k[/math]. Для всех возможных пар двоичных векторов длины [math]k[/math] подсчитаем и запомним их скалярное произведение по модулю [math]2[/math].

Сжатие матриц

Воспользуемся полученным в предыдущем пункте результатом.

Возьмём первую матрицу. разделим каждую её строку на куски размера [math]k[/math]. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине [math]k[/math](последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу [math]A'_{n \times \lceil\frac{n}{k} \rceil}[/math].

Аналогично поступим с матрицей [math]B[/math], вместо строк деля столбцы. Получим матрицу [math]B'_{\lceil\frac nk\rceil\times n}[/math].

Теперь, если вместо произведения матриц [math]A[/math] и [math]B[/math] считать произведение новых матриц [math]A'[/math] и [math]B'[/math], воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы [math]C[/math] будет получаться уже за время, пропорциональное [math]\lceil \frac nk \rceil[/math] вместо [math]n[/math], и время произведения матриц сократится с [math]O(n^3)[/math] до [math]O(n^2 \cdot\frac nk) = O(\frac{n^3}{k}) [/math].

Оценка трудоёмкости и выбор k

Оценим трудоёмкость данного алгоритма.

  • Предподсчёт скалярных произведений работает за [math]O(2^{2k}k)[/math].
  • Создание матриц [math]A'[/math] и [math]B'[/math][math]O(N^2)[/math]
  • Перемножение полученных матриц — [math]O(\frac{n^3}{k})[/math]

Итого: [math]O(2^{2k}k) + O(\frac{n^3}{k})[/math]. Приведем анализ выбора числа [math]k[/math] для получения оптимальной сложности алгоритма.

В силу возрастания функции [math]f(k) = 2^{2k}k[/math] и убывания функции [math]g(k) = \frac{n^3}{k}[/math] имеем, что сложность будет оптимальна при таком значении [math]k[/math], что [math]f(k) = g(k)[/math].

Таким образом, при подстановке [math]k = \log n[/math], получаем итоговую трудоёмкость [math]O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})[/math]