Теория сложности (старая трешовая версия) — различия между версиями
(→Лекция 4) |
|||
Строка 114: | Строка 114: | ||
*[[Теорема Шамира]] | *[[Теорема Шамира]] | ||
*[[Семейство универсальных попарно независимых хеш-функций|Семейство универсальных попарно независимых хеш-функций]] | *[[Семейство универсальных попарно независимых хеш-функций|Семейство универсальных попарно независимых хеш-функций]] | ||
+ | *[[Протокол Гольдвассера-Сипсера для оценки размера множества]] | ||
*[[Теорема Голдвассера, Сипсера]] | *[[Теорема Голдвассера, Сипсера]] | ||
Версия 13:28, 9 июня 2010
Содержание
Лекция 1. Вводная
Начнем курс с введения понятий DTIME и DSPACE.
- DTIME(f(n)) = машина Тьюринга , где — длина входа .
- DSPACE(f(n)) = машина Тьюринга .
Аналогичным образом введем классы NSPACE и NTIME, использующие недетерминированную машину Тьюринга взамен детерминированной (в течении всего курса префикс D соответствует детерминизму, а N — недетерминизму).
Рассмотрим и докажем теоремы о емкостной и временной иерархии.
- Теорема о емкостной иерархии утверждает, что для любых двух конструируемых по памяти функций и таких, что , выполняется DSPACE(g(n)) ≠ DSPACE(f(n)).
- Теорема о временной иерархии утверждает, что для любых двух конструируемых по времени функций и таких, что , выполняется DTIME(g(n)) ≠ DTIME(f(n)).
Через понятия классов DSPACE, DTIME, NSPACE и NTIME будет дано определение многим сложностным классам, в том числе P и NP.
Класс P — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время. Формально:
- P= DTIME
В свою очередь, при разрешении языка из класса NP используется недетерминированная машина:
- NP= NTIME
Дадим определение класса NP на языке сертификатов:
- NP=NP). Поясним, что является сертификатом принадлежности языку , если существует полиномиальное отношение (верификатор) , такое что тогда и только тогда, когда принадлежит . (первое равенство доказывается в статье
Вместе со многими сложностными классами имеет смысл рассматривать и их дополнения (используется приставка co-). Например, класс co-NP.
Введем в рассмотрение отношения между языками: сведение по Карпу и сведение по Куку.
- Язык сводится по Карпу к языку , если существует функция такая, что тогда и только тогда, когда .
- Язык сводится по Куку к , если существует разрешающая язык программа , работающая полиномиальное время от длины входа, которая может использовать разрешающую программу для языка в качестве оракула. При этом время работы не учитывается.
В дальнейшем чаще будет рассматриваться сведение по Карпу.
Практика 1
Лекция 2
Практика 2
- Понятие NP-трудной и NP-полной задачи
- NP-полнота задачи BH1N
- NP-полнота задачи о выполнимости булевой формулы в форме КНФ
- NP-полнота задачи о выполнимости булевой формулы в форме 3-КНФ
- NP-полнота задачи о клике
- NP-полнота задачи о независимом множестве
- NP-полнота задачи о вершинном покрытии
Лекция 3
Практика 3
- NP-полнота задач о гамильтоновом цикле и пути в графах
- NP-полнота задачи о сумме подмножества
- NP-полнота задачи о рюкзаке
Практика, которой на самом деле не было
Лекция 4
Лекция 5
Лекция 6
- Классы L, NL, NLC
- NL-полнота задачи о достижимости в графе
- Классы EXP, NEXP. Полнота языков EXP и NEXP
- Теорема о связи вопросов EXP=NEXP и P=NP
- Теорема Иммермана
Практика 6
Лекция 7
Практика 7
- Вероятностная машина Тьюринга
- Класс ZPP
- Сложностные классы RP и coRP
- Сложностный класс PP
- Сложностный класс BPP
- Уменьшение ошибки в классе RP, сильное и слабое определение
Лекция 8
Практика 8
Лекция 9
Лекция 10
- Теорема Шамира
- Семейство универсальных попарно независимых хеш-функций
- Протокол Гольдвассера-Сипсера для оценки размера множества
- Теорема Голдвассера, Сипсера
Лекция 11
- Абсолютная секретность
- Лемма о невозможности существования вычислительно безопасных шифров в случае P = NP
- Односторонние функции и псевдослучайные генераторы
- Доказательства с нулевым разглашением
Лекция 12
- Кубит
- Унитарные операторы
- ЭПР парадокс
- Квантовый логический элемент NOT
- Преобразование Адамара
- Квантовый логический элемент CNOT
- Квантовый логический элемент Тоффоли
- Квантовая схема