Перечислимые языки — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 11: Строка 11:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Пусть имеется некоторая программа <tex>p</tex>, которая может либо завершиться за конечное время и что-то вернуть, либо зависнуть. Тогда запуск программы <tex>p</tex> с тайм-лимитом <tex>TL</tex> будем обозначать как <tex>p|_{TL}</tex> и иметь в виду следующее: если за <tex>TL</tex> операций программа <tex>p</tex> корректно завершилась и что-то вернула, то <tex>p|_{TL}</tex> вернет то же самое; если же за <tex>TL</tex> операций программа <tex>p</tex> не успела завершиться, то <tex>p|_{TL}</tex> вернет <tex>\bot</tex> (специально зарезервированное значение).
+
Пусть имеется некоторая программа <tex>p</tex>, которая может либо завершиться за конечное время и что-то вернуть, либо зависнуть. Тогда запуск программы <tex>p</tex> с тайм-лимитом <tex>TL</tex> будем обозначать как <tex>p|_{TL}</tex> и иметь в виду следующее: если за <tex>TL</tex> операций программа <tex>p</tex> корректно завершилась и что-то вернула, то <tex>p|_{TL}</tex> вернет то же самое; если же за <tex>TL</tex> операций программа <tex>p</tex> не успела завершиться, то <tex>p|_{TL}</tex> вернет <tex>\bot</tex> (символ зависания).
 
}}
 
}}
  
Строка 20: Строка 20:
 
<tex>L-</tex> перечислимый <tex>\Leftrightarrow L-</tex> полуразрешимый.
 
<tex>L-</tex> перечислимый <tex>\Leftrightarrow L-</tex> полуразрешимый.
 
|proof=
 
|proof=
Пусть <tex>L-</tex> перечислимый.
+
Пусть <tex>L-</tex> перечислимый язык. Докажем, что он полуразрешим, приведя соответствующую программу.
 
  <tex>p(x):</tex>
 
  <tex>p(x):</tex>
 
   for <tex> i = 1 ~ .. ~ \infty</tex>
 
   for <tex> i = 1 ~ .. ~ \infty</tex>
 
     if <tex> g(i) == x</tex>
 
     if <tex> g(i) == x</tex>
 
       return <tex> 1</tex>
 
       return <tex> 1</tex>
Пусть <tex>L-</tex> полуразрешимый.
+
Пусть <tex>L-</tex> полуразрешимый язык. Докажем, что он перечислим, приведя соответствующую программу.  
 
  <tex>g_0(i):</tex>
 
  <tex>g_0(i):</tex>
 
   <tex>cnt = 0</tex>
 
   <tex>cnt = 0</tex>
 
   for <tex> k = 1 ~ .. ~ \infty</tex>
 
   for <tex> k = 1 ~ .. ~ \infty</tex>
 
     for <tex> x \in \{x_1, x_2, .., x_k\}</tex>
 
     for <tex> x \in \{x_1, x_2, .., x_k\}</tex>
       if <tex> p|_k(i) == 1</tex>
+
       if <tex> p|_k(x) == 1</tex>
 
         <tex>cnt</tex>++
 
         <tex>cnt</tex>++
 
       if <tex> cnt == i</tex>
 
       if <tex> cnt == i</tex>
Строка 43: Строка 43:
 
       return <tex> x</tex>
 
       return <tex> x</tex>
 
     <tex>U.insert(x)</tex>
 
     <tex>U.insert(x)</tex>
 +
На каждой итерации цикла программы <tex>g</tex>, в множестве <tex>U</tex>, хранятся все выведенные на данный момент слова языка <tex>L</tex>.
 +
 
Приведённые программы доказывают эквивалентность определений.
 
Приведённые программы доказывают эквивалентность определений.
 
}}
 
}}
Строка 49: Строка 51:
 
|id=th2
 
|id=th2
 
|statement=
 
|statement=
Любой разрешимый язык <tex>L</tex> является перечислимым.
+
Любой [[Разрешимые_(рекурсивные)_языки | разрешимый язык]] <tex>L</tex> является перечислимым.
 
|proof=  
 
|proof=  
 
Любой разрешимый язык <tex>L</tex> является полуразрешимым. А так как любой полуразрешимый язык является перечислимым, то разрешимый язык <tex>L</tex> является перечислимым.
 
Любой разрешимый язык <tex>L</tex> является полуразрешимым. А так как любой полуразрешимый язык является перечислимым, то разрешимый язык <tex>L</tex> является перечислимым.
 
}}
 
}}
 +
 +
== Литература ==
 +
Н. К. Верещагин,  А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. -- М.: МЦНМО, 1999

Версия 01:24, 19 декабря 2011

Определение:
Полуразрешимый язык [math]-[/math] язык, для которого существует программа [math]p[/math] такая, что [math]\forall x \in L \Leftrightarrow p(x)=1[/math].


Определение:
Перечислимый язык [math]-[/math] язык, для которого существует программа [math]g[/math] такая, что [math]g(i) = x_i, L = \{x_1, x_2, .., x_n, ..\}[/math].


Определение:
Пусть имеется некоторая программа [math]p[/math], которая может либо завершиться за конечное время и что-то вернуть, либо зависнуть. Тогда запуск программы [math]p[/math] с тайм-лимитом [math]TL[/math] будем обозначать как [math]p|_{TL}[/math] и иметь в виду следующее: если за [math]TL[/math] операций программа [math]p[/math] корректно завершилась и что-то вернула, то [math]p|_{TL}[/math] вернет то же самое; если же за [math]TL[/math] операций программа [math]p[/math] не успела завершиться, то [math]p|_{TL}[/math] вернет [math]\bot[/math] (символ зависания).


Теорема:
[math]L-[/math] перечислимый [math]\Leftrightarrow L-[/math] полуразрешимый.
Доказательство:
[math]\triangleright[/math]

Пусть [math]L-[/math] перечислимый язык. Докажем, что он полуразрешим, приведя соответствующую программу.

[math]p(x):[/math]
  for [math] i = 1 ~ .. ~ \infty[/math]
    if [math] g(i) == x[/math]
      return [math] 1[/math]

Пусть [math]L-[/math] полуразрешимый язык. Докажем, что он перечислим, приведя соответствующую программу.

[math]g_0(i):[/math]
  [math]cnt = 0[/math]
  for [math] k = 1 ~ .. ~ \infty[/math]
    for [math] x \in \{x_1, x_2, .., x_k\}[/math]
      if [math] p|_k(x) == 1[/math]
        [math]cnt[/math]++
      if [math] cnt == i[/math]
        return [math] x[/math]
[math]g(i):[/math]
  [math]U = \emptyset[/math]
  for [math] j = 1 ~ .. ~ \infty[/math]
    [math]x = g_0(j)[/math]
    if [math] x \notin U[/math]
      [math]cnt[/math]++
    if [math] cnt == i[/math]
      return [math] x[/math]
    [math]U.insert(x)[/math]

На каждой итерации цикла программы [math]g[/math], в множестве [math]U[/math], хранятся все выведенные на данный момент слова языка [math]L[/math].

Приведённые программы доказывают эквивалентность определений.
[math]\triangleleft[/math]
Теорема:
Любой разрешимый язык [math]L[/math] является перечислимым.
Доказательство:
[math]\triangleright[/math]
Любой разрешимый язык [math]L[/math] является полуразрешимым. А так как любой полуразрешимый язык является перечислимым, то разрешимый язык [math]L[/math] является перечислимым.
[math]\triangleleft[/math]

Литература

Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. -- М.: МЦНМО, 1999