Матричное представление перестановок — различия между версиями
Строка 47: | Строка 47: | ||
== Применение == | == Применение == | ||
− | * Благодаря | + | * Благодаря последним свойствам, матрицам перестановок нашлось применение в линейной алгебре: |
− | + | пусть задана матрица перестановки <tex>P = \begin{pmatrix} 1 && 0 && 0 \\ 0 && 0 && 1 \\ 0 && 1 && 0 \\ \end{pmatrix}</tex> (она соответствует перестановке <tex>\pi = \begin{pmatrix} 1 && 2 && 3 \\ 1 && 3 && 2 \end{pmatrix}</tex> ), и матрица <tex>A = \begin{pmatrix} 1 && 2 && 3 \\ 4 && 5 && 6 \\ 7 && 8 && 9 \\ \end{pmatrix}</tex>, | |
− | тогда перемножив получим | + | тогда перемножив получим: |
− | + | <tex>PA = \begin{pmatrix} 1 && 0 && 0 \\ 0 && 0 && 1 \\ 0 && 1 && 0 \\ \end{pmatrix} \begin{pmatrix} 1 && 2 && 3 \\ 4 && 5 && 6 \\ 7 && 8 && 9 \\ \end{pmatrix} = \begin{pmatrix} 1 && 2 && 3 \\ 7 && 8 && 9 \\ 4 && 5 && 6 \\ \end{pmatrix}</tex>, | |
+ | |||
+ | видно, что вторая и третья строки поменялись местами, | ||
+ | |||
+ | <tex>AP = \begin{pmatrix} 1 && 2 && 3 \\ 4 && 5 && 6 \\ 7 && 8 && 9 \\ \end{pmatrix} \begin{pmatrix} 1 && 0 && 0 \\ 0 && 0 && 1 \\ 0 && 1 && 0 \\ \end{pmatrix} = \begin{pmatrix} 1 && 3 && 2 \\ 4 && 6 && 5 \\ 7 && 9 && 8 \\ \end{pmatrix}</tex>, | ||
+ | |||
+ | видно, что второй и третий столбец поменялись местами. | ||
== Ссылки == | == Ссылки == |
Версия 06:56, 19 декабря 2011
Содержание
Определение
Определение: |
Матрица перестановки — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
- Для любых двух перестановок
- Матрицы перестановки ортогональны, так что для каждой такой матрицы существует обратная:
- Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
- Умножение перестановочной матрицы на произвольную меняет местами строки в .
Применение
- Благодаря последним свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки
(она соответствует перестановке ), и матрица ,тогда перемножив получим:
,
видно, что вторая и третья строки поменялись местами,
,
видно, что второй и третий столбец поменялись местами.