Матричное представление перестановок — различия между версиями
(→Ссылки) |
|||
Строка 62: | Строка 62: | ||
== Ссылки == | == Ссылки == | ||
− | *[http://ru.wikipedia.org/wiki/Матрица_перестановки Матрица перестановки] | + | *[http://ru.wikipedia.org/wiki/Матрица_перестановки Матрица перестановки - Википедия] |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика]] | [[Категория: Комбинаторика]] |
Версия 07:01, 19 декабря 2011
Содержание
Определение
Определение: |
Матрица перестановки — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
- Для любых двух перестановок
- Матрицы перестановки ортогональны, так что для каждой такой матрицы существует обратная:
- Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
- Умножение перестановочной матрицы на произвольную меняет местами строки в .
Применение
Благодаря последним свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки
(она соответствует перестановке ), и матрица ,тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.