Марковская цепь — различия между версиями
Rybak (обсуждение | вклад) (→Определение) |
Whiplash (обсуждение | вклад) |
||
| Строка 36: | Строка 36: | ||
== Смотри также == | == Смотри также == | ||
| − | + | * [http://neerc.ifmo.ru/mediawiki/index.php/Теорема_о_поглощении Теорема о поглощении] | |
| + | |||
* [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D0%B8_%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D0%B0 Цепь Маркова] | * [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D0%B8_%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D0%B0 Цепь Маркова] | ||
* [http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2,_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B9_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B5%D0%B2%D0%B8%D1%87_(%D1%81%D1%82%D0%B0%D1%80%D1%88%D0%B8%D0%B9) Андрей Андреевич Марков] | * [http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2,_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B9_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B5%D0%B2%D0%B8%D1%87_(%D1%81%D1%82%D0%B0%D1%80%D1%88%D0%B8%D0%B9) Андрей Андреевич Марков] | ||
Версия 09:34, 22 декабря 2011
Содержание
Определение
| Определение: |
| Цепь Маркова — процесс, находящийся в одном из состояний.
При этом, если он находится в состоянии с номером , то он перейдет в состояние с вероятностью . Матрицу называют матрицей переходов. |
На матрицу переходов накладываются следующие условия:
Такая матрица называется стохастической.
В общем случае для марковской цепи задают вектор . — вероятность того, что в начале процесса марковская цепь находится в состоянии .
Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из в написана вероятность перехода из в , то есть .
Состояния
Состояния марковской цепи делятся на два класса: поглощающие (существенные) и непоглощающие (несущественные).
| Определение: |
| Состояние называют поглощающим (существенным), если . Все остальные состояния называют непоглощающими (несущественными). |
В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.
Вероятность того, что через шагов марковская цепь будет находиться в состоянии равна
Смотри также
Литература
- И.В. Романовский. «Дискретный анализ»
