Марковская цепь — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 28: | Строка 28: | ||
Все остальные состояния называют '''непоглощающими (несущественными)'''. | Все остальные состояния называют '''непоглощающими (несущественными)'''. | ||
}} | }} | ||
− | |||
− | |||
− | |||
В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими {{---}} 1 и 2. | В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими {{---}} 1 и 2. |
Версия 02:55, 23 декабря 2011
Содержание
Определение
Определение: |
Цепь Маркова — процесс, находящийся в одном из При этом, если он находится в состоянии с номером Матрицу , то он перейдет в состояние с вероятностью . называют матрицей переходов. | состояний.
На матрицу переходов накладываются следующие условия:
Такая матрица называется стохастической.
В общем случае для марковской цепи задают вектор
. — вероятность того, что в начале процесса марковская цепь находится в состоянии .Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из
в написана вероятность перехода из в , то есть .Состояния
Состояния марковской цепи делятся на два класса: поглощающие (существенные) и непоглощающие (несущественные).
Определение: |
Состояние | называют поглощающим (существенным), если . Все остальные состояния называют непоглощающими (несущественными).
В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.
Вероятность того, что через
шагов марковская цепь будет находиться в состоянии равнаСмотри также
Литература
- И.В. Романовский. «Дискретный анализ»