Алгоритм двух китайцев — различия между версиями
(→Сложность) |
(→Описание) |
||
Строка 13: | Строка 13: | ||
1) Если хотя бы одна вершина графа <tex>G</tex> недостижима из <tex>v</tex>, то требуемое дерево построить нельзя.<br> | 1) Если хотя бы одна вершина графа <tex>G</tex> недостижима из <tex>v</tex>, то требуемое дерево построить нельзя.<br> | ||
− | 2) Для каждой вершины <tex>u \ne v</tex> графа <tex>G</tex> | + | 2) Для каждой вершины <tex>u \ne v</tex> графа <tex>G</tex> произведём следующую операцию: найдём ребро минимального веса, входящее в <tex>u</tex>, и вычтем вес этого ребра из весов всех рёбер, входящих в <tex>u</tex>. <tex>m(u) = \min \limits_{tu \in E}w(tu), w'(tu) = w(tu) - m(u)</tex>.<br> |
3) Строим граф <tex>K = (V,K_0)</tex>, где <tex>K_0</tex> — множество рёбер нулевого веса графа <tex>G</tex> c весовой функцией <tex>w'</tex>. Если в этом графе найдётся остовное дерево с корнем в <tex>v</tex>, то оно и будет искомым.<br> | 3) Строим граф <tex>K = (V,K_0)</tex>, где <tex>K_0</tex> — множество рёбер нулевого веса графа <tex>G</tex> c весовой функцией <tex>w'</tex>. Если в этом графе найдётся остовное дерево с корнем в <tex>v</tex>, то оно и будет искомым.<br> | ||
4) Если такого дерева нет, то построим граф <tex>C</tex> — конденсацию графа <tex>K</tex>. Пусть <tex>y</tex> и <tex>z</tex> — две вершины графа <tex>C</tex>, отвечающие компонентам сильной связности <tex>Y</tex> и <tex>Z</tex> графа <tex>K</tex> соответственно. Положим вес ребра между вершинами <tex>y</tex> и <tex>z</tex> равным минимальному среди весов рёбер графа <tex>G</tex> с весовой функцией <tex>w'</tex>, идущих из <tex>Y</tex> в <tex>Z</tex>.<br> | 4) Если такого дерева нет, то построим граф <tex>C</tex> — конденсацию графа <tex>K</tex>. Пусть <tex>y</tex> и <tex>z</tex> — две вершины графа <tex>C</tex>, отвечающие компонентам сильной связности <tex>Y</tex> и <tex>Z</tex> графа <tex>K</tex> соответственно. Положим вес ребра между вершинами <tex>y</tex> и <tex>z</tex> равным минимальному среди весов рёбер графа <tex>G</tex> с весовой функцией <tex>w'</tex>, идущих из <tex>Y</tex> в <tex>Z</tex>.<br> | ||
5) Продолжим с пункта 2, используя граф <tex>C</tex> вместо <tex>G</tex>.<br> | 5) Продолжим с пункта 2, используя граф <tex>C</tex> вместо <tex>G</tex>.<br> | ||
− | 6) В <tex>C</tex> построено MST <tex>T</tex>. Построим теперь MST <tex>T'</tex> в <tex>G</tex> с весовой функцией <tex>w'</tex>. Добавим к <tex>T'</tex> все вершины компоненты сильной связности графа <tex>K</tex>, которой принадлежит <tex>v</tex> (по | + | 6) В <tex>C</tex> построено MST <tex>T</tex>. Построим теперь MST <tex>T'</tex> в <tex>G</tex> с весовой функцией <tex>w'</tex>. Добавим к <tex>T'</tex> все вершины компоненты сильной связности графа <tex>K</tex>, которой принадлежит <tex>v</tex> (по путям нулевого веса из <tex>v</tex>). Пусть в <tex>T</tex> есть ребро <tex>yz</tex>, где <tex>y</tex> отвечает компоненте сильной связности <tex>Y</tex>, а <tex>z</tex> — компоненте сильной связности <tex>Z</tex> графа <tex>K</tex>. Между <tex>Y</tex> и <tex>Z</tex> в графе <tex>G</tex> с весовой функцией <tex>w'</tex> есть ребро <tex>y'z'</tex>, вес которого равен весу ребра <tex>yz</tex>. Добавим это ребро к дереву <tex>T'</tex>. Добавим к <tex>T'</tex> все вершины компоненты <tex>Z</tex> по путям нулевого веса из <tex>z'</tex>. Сделаем так для каждого ребра дерева <tex>T</tex>.<br> |
7) Полученное дерево <tex>T'</tex> — MST в графе <tex>G</tex>. | 7) Полученное дерево <tex>T'</tex> — MST в графе <tex>G</tex>. | ||
Версия 11:41, 30 декабря 2011
Алгоритм двух китайцев — алгоритм построения минимального остовного дерева во взвешенном ориентированном графе с корнем в заданной вершине. Был разработан математиками Чу Йонджином и Лю Цзенхонгом.
Алгоритм
Постановка задачи
Дан взвешенный ориентированный граф
и начальная вершина . Требуется построить корневое остовное дерево в с корнем в вершине , сумма весов всех ребер которого минимальна.Описание
1) Если хотя бы одна вершина графа
2) Для каждой вершины графа произведём следующую операцию: найдём ребро минимального веса, входящее в , и вычтем вес этого ребра из весов всех рёбер, входящих в . .
3) Строим граф , где — множество рёбер нулевого веса графа c весовой функцией . Если в этом графе найдётся остовное дерево с корнем в , то оно и будет искомым.
4) Если такого дерева нет, то построим граф — конденсацию графа . Пусть и — две вершины графа , отвечающие компонентам сильной связности и графа соответственно. Положим вес ребра между вершинами и равным минимальному среди весов рёбер графа с весовой функцией , идущих из в .
5) Продолжим с пункта 2, используя граф вместо .
6) В построено MST . Построим теперь MST в с весовой функцией . Добавим к все вершины компоненты сильной связности графа , которой принадлежит (по путям нулевого веса из ). Пусть в есть ребро , где отвечает компоненте сильной связности , а — компоненте сильной связности графа . Между и в графе с весовой функцией есть ребро , вес которого равен весу ребра . Добавим это ребро к дереву . Добавим к все вершины компоненты по путям нулевого веса из . Сделаем так для каждого ребра дерева .
7) Полученное дерево — MST в графе .
Корректность
1) После перевзвешивания в каждую вершину, кроме
2) Пусть — искомое дерево в с весовой функцией . , т.е. - MST в с весовой функцией тогда и только тогда, когда — MST в с весовой функцией .
3) Пусть есть некоторый путь от вершины до некоторой вершины в графе с весовой функцией . Тогда мы можем добавить к нашему дереву все вершины из компоненты сильной связности графа , которой принадлежит вершина (по нулевым путям из ). При этом вес нашего дерева не изменится.
4) Если в графе нет остовного дерева с корнем в , то в графе содержится меньше вершин, чем в графе . Иначе, если бы в было бы столько же вершин, сколько в , то в все компоненты сильной связности состояли бы из единственной вершины. Значит в с весовой функцией не было бы нулевых циклов. То есть мы смогли бы построить в остовное дерево с корнем в , что противоречит нашему предположению.
5) Из сделанных замечаний следует, что дерево — MST в .
Сложность
Всего будет построено не более
конденсаций. Конденсацию можно построить за . Значит, алгоритм можно реализовать за .Источники
- Романовский И. В. Дискретный анализ, 3-е изд., перераб. и доп. - СПб.:Невский Диалект; БХВ-Петербург, 2003. - 320 с.: ил. - ISBN 5-7940-0114-3
- http://is.ifmo.ru