Изменения
Нет описания правки
|about = 3
|statement=
Пусть в сети <tex>N</tex> нет [[Основные определения теории графов|параллельных ребер]]. <tex>f</tex> - поток в <tex>N</tex>, а <tex>F</tex> - максимальный поток в <tex>N(f)</tex>. Тогда расстояние <tex>l</tex> между <tex>s</tex> и <tex>t</tex> в <tex>N(f)</tex> таково: <tex>l \leq |V|\sqrt{\frac{2C}{F}} - 1</tex>.
|proof=
Как и раньше, обозначим <tex>V_i</tex> как набор вершин на расстоянии <tex>i</tex> от <tex>s</tex>. Множество Множества <tex>X = \bigcup_{i = 0}^k V_i</tex> и <tex>Y = V - X</tex> определяют разрез <tex>(X, Y)</tex>. Пропускная способность этого разреза не больше <tex>2C|V_k||V_{k + 1}|</tex>, так как все ребра между <tex>X</tex> и <tex>Y</tex> также являются ребрами между <tex>V_k</tex> и <tex>V_{k+1}</tex> и не более чем двумя параллельными ребрами, исходящими из какой-то вершины в остаточной сети. По теореме о максимальном потоке/минимальном разрезе, <tex>F \leq 2C|V_k||V_{k+1}|</tex>.
Таким образом <tex>F</tex> ограничен наименьшим из <tex>|V_k||V_{k+1}|</tex>. Но этот минимум максимизируется, когда <tex>|V_i| = |V|/(l+1)</tex> для <tex>0 \leq i \leq n</tex>, таким образом <tex>F \leq 2C|V|^2(l+1)^2</tex>. Выражая <tex>l</tex> получаем нужное.
}}