Эргодическая марковская цепь — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 3: Строка 3:
 
:<tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots</tex>.
 
:<tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots</tex>.
 
}}
 
}}
 
[[Файл:MarkovTriangle.png|thumb|350px|Примеры графов переходов для цепей Маркова:
 
a) цепь не является слабо эргодической (не существует общего стока <ref>'''Общий сток''' - такая <tex>k</tex> вершина графа, что для любых двух различных вершин графа переходов <tex>i,j \, (i\neq j)</tex>, существуют ориентированные пути от вершины <tex>i</tex> к вершине <tex>k</tex> и от вершины <tex>j</tex> к вершине <tex>k</tex>.</ref> для состояний <tex>A_2, \, A_3</tex>); 
 
b) слабо эргодическая, но не эргодическая цепь (граф переходов является [[Отношение связности, компоненты связности|слабо-связным]])
 
c) эргодическая цепь ([[Отношение связности, компоненты связности|сильно-связный]] граф переходов).]]
 
  
 
==Основная теорема об эргодических распределениях==
 
==Основная теорема об эргодических распределениях==

Версия 01:48, 1 января 2012

Определение:
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) [math]\pi = (\pi_1,\pi_2,\ldots )^{\top}[/math], такое что [math]\pi_i \gt 0,\; i \in \mathbb{N}[/math] и
[math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots[/math].


Основная теорема об эргодических распределениях

Теорема (Основная теорема об эргодических распределениях):
Пусть [math]\{X_n\}_{n \ge 0}[/math] - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей [math]P = (p_{ij}),\; i,j=1,2,\ldots[/math]. Тогда эта цепь является эргодической тогда и только тогда, когда она
  1. Неразложима (т.е. цепь Маркова такова, что её состояния образуют лишь один неразложимый класс [1]);
  2. Положительно возвратна (т.е. находится в таком состоянии, выйдя из которого возвращается в него за конечное время);
  3. Апериодична (т.е. находится в таком состоянии, которое навещается цепью через промежутки времени, не кратные фиксированному числу).

Эргодическое распределение [math]\mathbf{\pi}[/math] тогда является единственным решением системы:

[math]\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}[/math].


Пример

Пример эргодической цепи

Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: [math]p_{ij}=0.5, i,j=1,2[/math].

Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение [math]\pi = (0.5,0.5)^{\top}[/math], такое что [math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2[/math].

См. также

Примечания

  1. Свойство сообщаемости порождает на пространстве состояний отношение эквивалентности. Порождаемые классы эквивалентности называются неразложимыми классами.

Ссылки

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.