Изменения
Нет описания правки
Пусть <tex> f </tex> и <tex> g </tex> - потоки равной величины в сети <tex> G </tex>. Тогда <tex> g </tex> можно представить как сумму <tex> f </tex> и нескольких циклов в остаточной сети <tex> G_f </tex>, т.е. <tex>g = f + \sum_{i} C_i </tex>.
|proof=
Рассмотрим разность потоков <tex> g - f </tex>. Она имеет поток величины , <tex> |g - f| = 0 </tex>. Построим ее декомпозицию. В декомпозиции могут быть только циклы, т.к. наличие путей <tex> s \leadsto t</tex> противоречило бы нулевой величине потока. Таким образом получили разбиение разности потоков на циклы. Заметим, что <tex> g(u,v) - f(u,v) \le c(u, v) - f(u, v) = c_f(u, v)</tex>, т.е. все циклы принадлежат <tex>G_f</tex>.
}}
об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети
|statement=
Поток <tex> f </tex> {{---}} минимальной стоимости <tex> \iff </tex> в остаточной сети <tex> G_f </tex> нет циклов отрицательного весаотрицательной стоимости.
|proof=
*<tex>\Rightarrow </tex>
От противного. Пусть существует <tex> C </tex> {{---}} цикл отрицательного веса отрицательной стоимости в <tex> G_f </tex>,
<tex> c_m </tex> {{---}} наименьшая остаточная пропускная способность среди рёбер <tex> C </tex>.
Пустим по <tex> C </tex> поток <tex> f_+ = c_m </tex>.
Так как сумма весов стоимостей по циклу отрицательна и поток по каждому ребру одинаков, то <tex> \sum_{(u,v) \in E} p(u,v) \cdot f_+(u,v) < 0</tex>
<tex>\Rightarrow </tex> <tex>\sum_{(u,v) \in E} p(u,v) \cdot (f + f_+)(u,v) < \sum_{(u,v) \in E} p(u,v) \cdot f(u, v)</tex> <tex>\Rightarrow f </tex> {{---}} не минимальный. Противоречие.
*<tex>\Leftarrow </tex>
Рассмотрим поток <tex> f </tex>: , такой что в <tex> G_f </tex> нет циклов отрицательной стоимости. Рассмотрим <tex> f' </tex> {{-- -}} поток величины <tex> |f| </tex> и минимальной стоимости, т. е. <tex> p(f') <= \leq p(f) </tex>. По лемме представим <tex>f' = f + \sum_{i} C_i </tex>. По условию стоимости всех циклов неотрицательны. Получаем <tex> p(f') >= \geq p(f) \Rightarrow p(f') = p(f)</tex>.
}}