Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети — различия между версиями
м (Дефис -> тире) |
|||
Строка 3: | Строка 3: | ||
о разности потоков | о разности потоков | ||
|statement= | |statement= | ||
− | Пусть <tex> f </tex> и <tex> g </tex> - потоки равной величины в сети <tex> G </tex>. Тогда <tex> g </tex> можно представить как сумму <tex> f </tex> и нескольких циклов в остаточной сети <tex> G_f </tex>, т.е. <tex>g = f + \sum_{i} C_i </tex>. | + | Пусть <tex> f </tex> и <tex> g </tex> {{---}} потоки равной величины в сети <tex> G </tex>. Тогда <tex> g </tex> можно представить как сумму <tex> f </tex> и нескольких циклов в остаточной сети <tex> G_f </tex>, т.е. <tex>g = f + \sum_{i} C_i </tex>. |
|proof= | |proof= | ||
Рассмотрим разность потоков <tex> g - f </tex>, <tex> |g - f| = 0 </tex>. Построим ее декомпозицию. В декомпозиции могут быть только циклы, т.к. наличие путей <tex> s \leadsto t</tex> противоречило бы нулевой величине потока. Таким образом получили разбиение разности потоков на циклы. Заметим, что <tex> g(u,v) - f(u,v) \le c(u, v) - f(u, v) = c_f(u, v)</tex>, т.е. все циклы принадлежат <tex>G_f</tex>. | Рассмотрим разность потоков <tex> g - f </tex>, <tex> |g - f| = 0 </tex>. Построим ее декомпозицию. В декомпозиции могут быть только циклы, т.к. наличие путей <tex> s \leadsto t</tex> противоречило бы нулевой величине потока. Таким образом получили разбиение разности потоков на циклы. Заметим, что <tex> g(u,v) - f(u,v) \le c(u, v) - f(u, v) = c_f(u, v)</tex>, т.е. все циклы принадлежат <tex>G_f</tex>. |
Версия 22:05, 5 января 2012
Лемма (о разности потоков): |
Пусть и — потоки равной величины в сети . Тогда можно представить как сумму и нескольких циклов в остаточной сети , т.е. . |
Доказательство: |
Рассмотрим разность потоков | , . Построим ее декомпозицию. В декомпозиции могут быть только циклы, т.к. наличие путей противоречило бы нулевой величине потока. Таким образом получили разбиение разности потоков на циклы. Заметим, что , т.е. все циклы принадлежат .
Лемма (об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети): |
Поток — минимальной стоимости в остаточной сети нет циклов отрицательной стоимости. |
Доказательство: |
От противного. Пусть существует — цикл отрицательной стоимости в , — наименьшая остаточная пропускная способность среди рёбер .Пустим по поток . Так как сумма стоимостей по циклу отрицательна и поток по каждому ребру одинаков, то— не минимальный. Противоречие. |
Литература
- Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)