Обсуждение:Сходимость по мере — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
(Утверждение: Новая тема)
Строка 9: Строка 9:
 
: Доказательство вообще, походу, придумывалось под кокаином, ничего пока не трогайте, сейчас пытаюсь исправить его. --[[Участник:Sementry|Мейнстер Д.]] 00:55, 7 января 2012 (MSK)
 
: Доказательство вообще, походу, придумывалось под кокаином, ничего пока не трогайте, сейчас пытаюсь исправить его. --[[Участник:Sementry|Мейнстер Д.]] 00:55, 7 января 2012 (MSK)
 
:: UPD: вроде все пофиксил, но доказательство теоремы по-прежнему вызывает сомнения. Нужен еще один внимательный читатель. --[[Участник:Sementry|Мейнстер Д.]] 01:35, 7 января 2012 (MSK)
 
:: UPD: вроде все пофиксил, но доказательство теоремы по-прежнему вызывает сомнения. Нужен еще один внимательный читатель. --[[Участник:Sementry|Мейнстер Д.]] 01:35, 7 января 2012 (MSK)
 +
 +
== Утверждение ==
 +
 +
: Это нормально?
 +
: В одном месте "Значит, <tex>f_n(x) \xrightarrow[n \to \infty]{} 0</tex> всюду на <tex>\mathbb{R}^+</tex>."
 +
: В другом "<tex>f_n \not\Rightarrow 0</tex>, хотя стремится к <tex>0</tex> почти всюду." --[[Участник:Rybak|Андрей Рыбак]] 01:30, 9 января 2012 (MSK)

Версия 01:30, 9 января 2012

а что при этом доказательство теоремы лебега + неужеди это правда!

Исправил несколько мелких опечаток в док-ве теоремы, разберитесь со стрелочками в теореме и в конце доказательства(как я понимаю, там должна быть одна и та же...но какая? (smile))

косяки

в доказательстве теоремы в паре мест перепутаны значки пересечения и объединения

еще в док-ве где: "вспоминая, что сумма ряда есть предел частичных сумм". надо написать, что их этого следует, что [math]\mu\bar{B_m}\rightarrow\mu\bar{B}[/math]

Доказательство вообще, походу, придумывалось под кокаином, ничего пока не трогайте, сейчас пытаюсь исправить его. --Мейнстер Д. 00:55, 7 января 2012 (MSK)
UPD: вроде все пофиксил, но доказательство теоремы по-прежнему вызывает сомнения. Нужен еще один внимательный читатель. --Мейнстер Д. 01:35, 7 января 2012 (MSK)

Утверждение

Это нормально?
В одном месте "Значит, [math]f_n(x) \xrightarrow[n \to \infty]{} 0[/math] всюду на [math]\mathbb{R}^+[/math]."
В другом "[math]f_n \not\Rightarrow 0[/math], хотя стремится к [math]0[/math] почти всюду." --Андрей Рыбак 01:30, 9 января 2012 (MSK)