Обсуждение:Процесс Каратеодори — различия между версиями
(→Полнота) |
|||
| Строка 17: | Строка 17: | ||
Вроде бы, вместо <tex>\mu^*E\geq \mu^*(E\cap B) - \mu^*(E\cap\bar B)</tex> должно быть <tex>\mu^*E\geq \mu^*(E\cap B) + \mu^*(E\cap\bar B)</tex>, именно это нужно проверять для установления того, хорошо ли <tex>B</tex> разбивает <tex>E</tex>. Если с минусом, то это более слабое утверждение и вообще какой-то укур. --[[Участник:Glukos|Иван Раков]] 09:18, 6 января 2012 (MSK) | Вроде бы, вместо <tex>\mu^*E\geq \mu^*(E\cap B) - \mu^*(E\cap\bar B)</tex> должно быть <tex>\mu^*E\geq \mu^*(E\cap B) + \mu^*(E\cap\bar B)</tex>, именно это нужно проверять для установления того, хорошо ли <tex>B</tex> разбивает <tex>E</tex>. Если с минусом, то это более слабое утверждение и вообще какой-то укур. --[[Участник:Glukos|Иван Раков]] 09:18, 6 января 2012 (MSK) | ||
: Пофиксил, в том числе не только это, проверьте, а. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:36, 6 января 2012 (MSK) | : Пофиксил, в том числе не только это, проверьте, а. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:36, 6 января 2012 (MSK) | ||
| + | |||
| + | == Критерий <tex>\mu</tex>-измеримости == | ||
| + | а вообще не <tex>\mu</tex>* ли? | ||
| + | |||
| + | Мы нашли пару измеримых множеств, между которыми вставлено <tex>E</tex>. <tex>\mu(B\setminus A) = 0</tex>. Значит, по полноте <tex> \mu </tex>, утверждение верно. | ||
| + | |||
| + | вообще по непрерывности. | ||
Версия 02:02, 10 января 2012
Проверено
Вроде все адекватно, поправил кое-какие мелочи, но лучше ещё внимательных читателей. --Дмитрий Герасимов 08:35, 31 декабря 2011 (MSK)
- Подтверждаю, что все адекватно, снял плашку про читателей. --Мейнстер Д. 03:18, 6 января 2012 (MSK)
Следствие
, — A всегда больше , B всегда уменьшается. Так почему же из того, что следует ? --Дмитрий Герасимов 09:22, 31 декабря 2011 (MSK)
- Не вижу в этом никаких проблем. Объединение подмножеств какого-то множества тоже является его подмножеством, пересечение надмножеств, содержащих множество, тоже его содержит, так что здесь все корректно. --Мейнстер Д. 03:18, 6 января 2012 (MSK)
- Из твоего объяснения я ничего не понял, но подумал сам ещё раз, и понял что я был упорот =) --Дмитрий Герасимов 03:30, 6 января 2012 (MSK)
опечатка?
в дальнейшем первоначальная мера называется m
должно быть:
Полнота
Вроде бы, вместо должно быть , именно это нужно проверять для установления того, хорошо ли разбивает . Если с минусом, то это более слабое утверждение и вообще какой-то укур. --Иван Раков 09:18, 6 января 2012 (MSK)
- Пофиксил, в том числе не только это, проверьте, а. --Дмитрий Герасимов 17:36, 6 января 2012 (MSK)
Критерий -измеримости
а вообще не * ли?
Мы нашли пару измеримых множеств, между которыми вставлено . . Значит, по полноте , утверждение верно.
вообще по непрерывности.