Сходимость по мере — различия между версиями
System29a (обсуждение | вклад) |
|||
Строка 80: | Строка 80: | ||
Замечание: даже в случае конечной меры <tex> E </tex> последовательность функций, сходящаяся по мере, может не иметь предела ни в одной точке. | Замечание: даже в случае конечной меры <tex> E </tex> последовательность функций, сходящаяся по мере, может не иметь предела ни в одной точке. | ||
+ | |||
+ | == Единственность предела по мере == | ||
+ | |||
+ | {{Теорема | ||
+ | |statement= | ||
+ | Если последовательность измеримых функций <tex>f_n \colon E \to \mathbb R</tex> стремится по мере к <tex>f</tex> и <tex>g</tex>, то <tex>f = g</tex> почти всюду на <tex>E</tex> | ||
+ | |proof= | ||
+ | Определим следующие множества: | ||
+ | * <tex>P_n = E(|f - g| > 1/n)</tex> | ||
+ | * <tex>P'_n = E(|f_n - f| > 1/n)</tex> | ||
+ | * <tex>P''_n = E(|f_n - g| > 1/n)</tex> | ||
+ | |||
+ | }} | ||
[[Предельный переход в классе измеримых функций|<<]][[Классические теоремы теории измеримых функций|>>]] | [[Предельный переход в классе измеримых функций|<<]][[Классические теоремы теории измеримых функций|>>]] | ||
[[Категория:Математический анализ 2 курс]] | [[Категория:Математический анализ 2 курс]] |
Версия 10:56, 10 января 2012
Пусть функции
— измеримы на , множества , где , измеримы.
Определение: |
стремятся по мере на к ( ), если |
В определённом смысле, это наиболее слабый вид сходимости, что подтверждает следующая классическая теорема Лебега.
TODO: запилить единственность
Теорема Лебега
Теорема (Лебег): |
, почти всюду на . Тогда . |
Доказательство: |
Как мы выяснили ранее, удобно рассматривать ; по условию теоремы, .Пусть , тогда , очевидно, содержится в , поэтому, по полноте меры, .
Покажем, что он равен нулю. Или, более общий факт: .Для этого воспользуемся тем, что — конечен.Так как , то (здесь под имеется в виду дополнение до ).— убывающая ( ), значит, дополнения растут: . Значит, .. Значит, . По -аддитивности, .В силу конечности , .Вставляя это в ряд и вспоминая, что ряд — предел частичных сумм, получаем Так как частичная сумма этого ряда с номером — не что иное, как , то ., , отсюда . В нашем случае .
Значит, по определению. |
Продемонстрируем теперь, что условие конечности меры важно:
Утверждение: |
— существенно. |
Рассмотрим функции , .При фиксированном , для всех . Значит, всюду на .Возьмем ,Значит, Значит, , хотя стремится к почти всюду. |
Замечание: даже в случае конечной меры
последовательность функций, сходящаяся по мере, может не иметь предела ни в одной точке.Единственность предела по мере
Теорема: |
Если последовательность измеримых функций стремится по мере к и , то почти всюду на |
Доказательство: |
Определим следующие множества: |