Сходимость по мере — различия между версиями
Sementry (обсуждение | вклад) м |
Sementry (обсуждение | вклад) м (→Единственность предела по мере: недочет в оформлении) |
||
| Строка 87: | Строка 87: | ||
|proof= | |proof= | ||
Определим следующие множества: | Определим следующие множества: | ||
| − | * <tex>P_n = E(|f - g| \ge | + | * <tex>P_n = E(|f - g| \ge \frac1n)</tex> |
| − | * <tex>P'_{nk} = E(|f_k - f| \ge | + | * <tex>P'_{nk} = E(|f_k - f| \ge \frac1{2n})</tex> |
| − | * <tex>P''_{nk} = E(|f_k - g| \ge | + | * <tex>P''_{nk} = E(|f_k - g| \ge \frac1{2n})</tex> |
| − | Заметим, что <tex>P_n \subset (P'_{nk} \cup P''_{nk})</tex>: если <tex>x \notin P'_{nk} \cup P''_{nk}</tex>, то <tex>|f_k(x) - f(x)| < | + | Заметим, что <tex>P_n \subset (P'_{nk} \cup P''_{nk})</tex>: если <tex>x \notin P'_{nk} \cup P''_{nk}</tex>, то <tex>|f_k(x) - f(x)| < \frac1{2n}</tex> и <tex>|f_k(x) - g(x)| < \frac1{2n}</tex>, а тогда <tex>|f(x) - g(x)| < |f(x) - f_k(x)| + |g(x) - f_k(x)| = \frac1n</tex>, т.е. <tex>x \notin P_n</tex>. |
По полуаддитивности меры <tex>\mu P_n \le \mu P'_{nk} + P''_{nk}</tex>. Сумма в правой части стремится к нулю при <tex>k \rightarrow \infty</tex>, следовательно, <tex>\mu P_n = 0</tex>. Поскольку <tex>E(f \neq g) = \bigcup\limits_{n = 1}^\infty P_n</tex>, то <tex>\mu E(f \neq g) \le \sum\limits_{n = 1}^\infty \mu P_n = 0</tex>, что и требовалось доказать. | По полуаддитивности меры <tex>\mu P_n \le \mu P'_{nk} + P''_{nk}</tex>. Сумма в правой части стремится к нулю при <tex>k \rightarrow \infty</tex>, следовательно, <tex>\mu P_n = 0</tex>. Поскольку <tex>E(f \neq g) = \bigcup\limits_{n = 1}^\infty P_n</tex>, то <tex>\mu E(f \neq g) \le \sum\limits_{n = 1}^\infty \mu P_n = 0</tex>, что и требовалось доказать. | ||
Версия 23:01, 10 января 2012
Пусть функции — измеримы на , множества , где , измеримы.
| Определение: |
| стремятся по мере на к (), если |
В определённом смысле, это наиболее слабый вид сходимости, что подтверждает следующая классическая теорема Лебега.
Теорема Лебега
| Теорема (Лебег): |
, почти всюду на . Тогда . |
| Доказательство: |
|
Как мы выяснили ранее, удобно рассматривать ; по условию теоремы, . Пусть , тогда , очевидно, содержится в , поэтому, по полноте меры, .
Покажем, что он равен нулю. Или, более общий факт: . Для этого воспользуемся тем, что — конечен. Так как , то (здесь под имеется в виду дополнение до ). — убывающая (), значит, дополнения растут: . Значит, . . Значит, . По -аддитивности, . В силу конечности , . Вставляя это в ряд и вспоминая, что ряд — предел частичных сумм, получаем Так как частичная сумма этого ряда с номером — не что иное, как , то . , , отсюда . В нашем случае .
Значит, по определению. |
Продемонстрируем теперь, что условие конечности меры важно:
| Утверждение: |
— существенно. |
|
Рассмотрим функции , . При фиксированном , для всех . Значит, всюду на . Возьмем , Значит, Значит, , хотя стремится к почти всюду. |
Замечание: даже в случае конечной меры последовательность функций, сходящаяся по мере, может не иметь предела ни в одной точке.
Единственность предела по мере
| Теорема: |
Если последовательность измеримых функций стремится по мере к и , то почти всюду на |
| Доказательство: |
|
Определим следующие множества: Заметим, что : если , то и , а тогда , т.е. . По полуаддитивности меры . Сумма в правой части стремится к нулю при , следовательно, . Поскольку , то , что и требовалось доказать. |