Основные определения: алфавит, слово, язык, конкатенация, свободный моноид слов; операции над языками — различия между версиями
Kirelagin (обсуждение | вклад) |
|||
| Строка 52: | Строка 52: | ||
Таким образом, мы получаем '''свободный [[Моноид|моноид]] слов'''. | Таким образом, мы получаем '''свободный [[Моноид|моноид]] слов'''. | ||
| + | |||
| + | |||
| + | [[Категория: Теория формальных языков]] | ||
| + | [[Категория: Автоматы и регулярные языки]] | ||
Версия 06:44, 11 января 2012
| Определение: |
| Алфавит — конечное непустое множество. Условимся обозначать алфавит символом . |
Наиболее часто используются следующие алфавиты:
- — бинарный или двоичный алфавит.
- — множество строчных букв английского алфавита.
| Определение: |
| Слово (цепочка) — конечная последовательность символов некоторого алфавита. |
| Определение: |
| Пустая цепочка — цепочка, не содержащая ни одного символа. Эту цепочку, обозначаемую , можно рассматривать как цепочку в любом алфавите. |
| Определение: |
| Длина цепочки — число символов в цепочке. Длину некоторой цепочки обычно обозначают . |
| Определение: |
| — множество цепочек длины над алфавитом . |
| Определение: |
| — множество всех цепочек над алфавитом . |
| Определение: |
| Язык над алфавитом — некоторое подмножество . Иногда такие язык называют формальными, чтобы подчеркнуть отличие от языков в привычном смысле. |
Отметим, что язык в не обязательно должен содержать цепочки, в которые входят все символы . Поэтому, если известно, что является языком над , то можно утверждать, что — это язык над любым алфавитом, являющимся надмножеством .
| Определение: |
| Пусть . Тогда обозначает их конкатенацию, т.е. цепочку, в которой последовательно записаны цепочки x и y. |
Свойства
Таким образом, мы получаем свободный моноид слов.