Полные системы функций. Теорема Поста о полной системе функций — различия между версиями
Строка 106: | Строка 106: | ||
# Присутствует член <tex>\oplus ~1</tex>. Возьмем отрицание от <tex>g_l</tex> и член <tex>\oplus ~1</tex> уберется. | # Присутствует член <tex>\oplus ~1</tex>. Возьмем отрицание от <tex>g_l</tex> и член <tex>\oplus ~1</tex> уберется. | ||
# Присутствуют три члена, без <tex>\oplus ~1</tex>: <tex>g_l= x_1 \land x_2 \oplus x_1 \oplus x_2</tex>. Составив таблицу истинности для этой функции, нетрудно заметить, что она эквивалентна функции ИЛИ. | # Присутствуют три члена, без <tex>\oplus ~1</tex>: <tex>g_l= x_1 \land x_2 \oplus x_1 \oplus x_2</tex>. Составив таблицу истинности для этой функции, нетрудно заметить, что она эквивалентна функции ИЛИ. | ||
− | # Присутствуют два члена, без <tex>\oplus ~1</tex>. Построив две таблицы истинности, для двух различных вариантов, видим, что в обоих случаях функция истинна только в одной точке, следовательно, СДНФ будет состоять только из одного члена, а если это так, то не составляет труда выразить И | + | # Присутствуют два члена, без <tex>\oplus ~1</tex>. Построив две таблицы истинности, для двух различных вариантов, видим, что в обоих случаях функция истинна только в одной точке, следовательно, СДНФ функции <tex>g_l</tex> будет состоять только из одного члена, а если это так, то не составляет труда выразить И через НЕ и <tex>g_l</tex>. Например, если функция <tex>g_l(x_1, x_2, ..., x_n)</tex> принимает истинное значение, когда аргументы c номерами <tex>i_1, i_2, ..., i_m</tex> ложны, а все остальные истины, тогда функцию И можно выразить как <tex>g_l([\lnot]x_1, [\lnot]x_2, ..., [\lnot]x_n)</tex>, где <tex>\lnot</tex> ставится перед аргументами с номерами <tex>i_1, i_2, ..., i_m</tex>. |
− | # Присутствует один член. Выразим И | + | # Присутствует один член. Выразим И через НЕ и <tex>g_l</tex> аналогично пункту 3. |
− | В итоге получаем функцию НЕ, а также либо функцию И, либо функцию ИЛИ. Поскольку функцию И можно выразить через ИЛИ и НЕ, а функцию ИЛИ через И и НЕ, то мы получили базис И, ИЛИ, НЕ. Любую булеву функцию, не равную тождественному нулю, можно представить в форме [[СДНФ]], т. е. с помощью данного базиса. Если же функция равна тождественному нулю, то ее можно представить в виде <tex>x \land \ | + | В итоге получаем функцию НЕ, а также либо функцию И, либо функцию ИЛИ. Поскольку функцию И можно выразить через ИЛИ и НЕ, а функцию ИЛИ через И и НЕ, то мы получили базис И, ИЛИ, НЕ. Любую булеву функцию, не равную тождественному нулю, можно представить в форме [[СДНФ]], т. е. с помощью данного базиса. Если же функция равна тождественному нулю, то ее можно представить в виде <tex>x \land \lnot x</tex>. Значит, полученные функции образуют полную систему, т. к. с их помощью можно выразить любую булеву функцию. Из этого следует, что K {{---}} полная система функций, что и требовалось доказать. |
}} | }} | ||
Версия 01:38, 12 января 2012
Содержание
Полные системы функций
Определение: |
Если любая булева функция, являющаяся суперпозицией функций некоторого множества принадлежит этому множеству, то такое множество называют замкнутым. |
Определение: |
Замыканием множества функций называется такое подмножество всех булевых функций, что любую из этих функций можно выразить через функции исходного множества. |
Определение: |
Множество булевых функций называется полной системой, если замыкание этого множества совпадает с множеством всех функций. |
Определение: |
Полная система функций называется безызбыточной, если она перестает быть полной при исключении из неё любого элемента. |
Американский математик Эмиль Пост сформулировал необходимое и достаточное условие полноты системы булевых функций. Для этого он ввел в рассмотрение следующие замкнутые классы булевых функций:
- Функции, сохраняющие константу и ;
- Самодвойственные функции ;
- Монотонные функции ;
- Линейные функции .
Замкнутые классы булевых функций
Класс функций
.Определение: |
Говорят, что функция сохраняет ноль, если | .
Класс функций
.Определение: |
Говорят, что функция сохраняет один, если | .
Класс самодвойственных функций
.Определение: |
Говорят, что функция самодвойственна, если | . Иными словами, функция называется самодвойственной, если на противоположных наборах она принимает противоположные значения.
Класс монотонных функций .
Определение: |
Говорят, что функция монотонна, если | .
Класс линейных функций .
Определение: |
Говорят, что функция линейна, если существуют такие
| , где , что для любых имеет место равенство:
Количество линейных функций от
переменных равно .Функция является линейной тогда, и только тогда, когда в ее полиноме Жегалкина присутствуют слагаемые, каждое из которых зависит не более чем от одной переменной. Построить полином Жегалкина можно с помощью преобразования Мебиуса.
Формулировка и доказательство критерия Поста
Теорема: |
Набор булевых функций K является полным тогда и только тогда, когда он не содержится полностью ни в одном из классов , т.е. когда в нем имеется хотя бы одна функция, не сохраняющая ноль, хотя бы одна функция, не сохраняющая один, хотя бы одна несамодвойственная функция, хотя бы одна немонотонная функция и хотя бы одна нелинейная функция. |
Доказательство: |
Заметим, что необходимость этого утверждения очевидна, так как если бы все функции из набора К входили в один из перечисленных классов, то и все суперпозиции, а значит, и замыкание набора входило бы в этот класс и класс К не мог быть полным. Докажем достаточность этого утверждения. Рассмотрим функцию, не сохраняющую ноль — . . может принимать два значения:а) , тогда .б) , тогда .Рассмотрим функцию, не сохраняющую один — . . может принимать два значения:а) , тогда .б) , тогда .Возможны четыре варианта: 1) Мы получили функцию НЕ. Используем несамодвойственную функцию .По определению найдется такой вектор , что . .Возьмем , где , при и , при .Нетрудно заметить, что . Таким образом мы получили одну из констант.2) Мы получили НЕ и . .3) Мы получили НЕ и . .4) Мы получили и .Рассмотрим немонотонную функцию . Существуют такие , что , , зафиксируем все , тогда .В итоге имеем три функции: НЕ, , .Используем нелинейную функцию полинома Жегалкина), выберем тот, в котором минимальное количество элементов. Все аргументы, кроме двух, в этом члене, приравняем единице, оставшиеся два назовем и , а все элементы, не входящие в данный член, сделаем равными нулю. Тогда эта функция будет представима в виде , где в квадратных скобках указаны члены, которые могут и не присутствовать (остальные слагаемые будут равны нулю, поскольку в них есть как минимум один аргумент не входящие в выбранный член, т. к. мы выбрали член, в котором минимальное число элементов). . Среди нелинейных членов (ее представления в видеРассмотрим несколько вариантов:
|
Примеры
Согласно критерию Поста система булевых функций полна тогда и только тогда, когда она не содержится целиком ни в одном из классов
, , , , .В частности, если функция не входит ни в один из классов Поста, она сама по себе формирует полную систему. В качестве примера можно назвать штрих Шеффера или стрелку Пирса.
Широко известны такие полные системы булевых функций:
- (конъюнкция, дизъюнкция, отрицание);
- (конъюнкция, сложение по модулю два, константа один).
Первая система используется, например, для представления функций в виде дизъюнктивных и конъюнктивных нормальных форм, вторая — для представления в виде полиномов Жегалкина.
Первая из упоминавшихся выше полных систем безызбыточной не является, поскольку согласно законам де Моргана либо дизъюнкцию, либо конъюнкцию можно исключить из системы и восстановить с помощью остальных двух функций. Вторая система является безызбыточной — все три её элемента необходимы для полноты. Максимально возможное число булевых функций в базисе — четыре.
Иногда говорят о системе функций, полной в некотором замкнутом классе, и соответственно о базисе этого класса. Например, систему
можно назвать базисом класса линейных функций.