Математическое ожидание случайной величины — различия между версиями
(создал по материалу из других конспектов) |
(нет различий)
|
Версия 08:48, 13 января 2012
Содержание
Математическое ожидание случайной величины
Определение: |
Математическое ожидание( | ) - мера среднего значения случайной величины, равна
Теорема: |
Доказательство: |
Пример
Пусть наше вероятностное пространство — «честная кость»
Линейность математического ожидания
Теорема: |
Математическое ожидание линейно. |
Доказательство: |
1. 2. , где — действительное число |
Использование линейности
Рассмотрим два примера
Пример 1
Найти математическое ожидание суммы цифр на случайной кости домино.
Пусть
— случайная величина которая возвращает первое число на кости домино, а — возвращает второе число. Очевидно, что . Посчитаем .
Получаем ответ
Пример 2
Пусть у нас есть строка s. Строка t генерируется случайным образом так, что два подряд идущих символа неравны. Какое математическое ожидание количества совпавших символов? Считать что размер алфавита равен
, а длина строки .Рассмотрим случайные величины
— совпал ли у строк -тый символ. Найдем математическое ожидание этой величины где — тые символы соответствующих строк. Так как появление каждого символа равновероятно, то .Итоговый результат: