Цепные дроби как приближение к числу — различия между версиями
(→Доказательство) |
(→Доказательство) |
||
Строка 5: | Строка 5: | ||
Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{2Q^2}</math> | Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{2Q^2}</math> | ||
===Доказательство=== | ===Доказательство=== | ||
− | Рассмотрим две последующие подходящие дроби к <math>\alpha : \frac{P_k}{Q_k} </math> и <math> \frac{P_{k+1}}{Q_{k+1}}</math> | + | Рассмотрим две последующие подходящие дроби к <math>\alpha : \frac{P_k}{Q_k} </math> и <math> \frac{P_{k+1}}{Q_{k+1}}</math>. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: <math>~|\alpha-\frac{P_k}{Q_k}|>=\frac{1}{2Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}| >=\frac{1}{2Q_k^2}</math> |
==Теорема 3== | ==Теорема 3== |
Версия 22:28, 20 июня 2010
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число
разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:Теорема 1
Теорема 2
Для любого иррационального числа
существует бесконечное число дробей таких, чтоДоказательство
Рассмотрим две последующие подходящие дроби к
и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем:Теорема 3
Для любого иррационального числа
существует бесконечное число дробей таких, что