Использование потенциалов Джонсона при поиске потока минимальной стоимости — различия между версиями
(→Асимптотика) |
(→Использование потенциалов Джонсона) |
||
| Строка 12: | Строка 12: | ||
== Использование потенциалов Джонсона == | == Использование потенциалов Джонсона == | ||
| − | Возьмём значения потенциалов в вершинах равными минимальному по цене расстоянию от стока до них или <tex>+\infty</tex>, если она недостижима. Так как <tex>\,C_{ij} + P_i</tex> | + | Возьмём значения потенциалов в вершинах равными минимальному по цене расстоянию от стока до них или <tex>+\infty</tex>, если она недостижима. Так как <tex>\,C_{ij} + P_i</tex> — это длина какого-то пути до вершины <tex>\,j</tex>, а <tex>\,P_j</tex> — длина минимального пути, то <tex>C_{P_{ij}} \geqslant 0</tex>, что от нас и требовалось. |
Значения потенциалов найдём с помощью [[Алгоритм Форда-Беллмана|алгоритма Форда-Беллмана]]. Таким образом, нам его придётся запустить всего один раз, а не на каждом шаге алгоритма. | Значения потенциалов найдём с помощью [[Алгоритм Форда-Беллмана|алгоритма Форда-Беллмана]]. Таким образом, нам его придётся запустить всего один раз, а не на каждом шаге алгоритма. | ||
Версия 01:54, 17 января 2012
Мотивация
Идея аналогична идее, использующейся в алгоритме Джонсона.
При поиске потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости нам требуется находить минимальный по стоимости поток из истока в сток. Поскольку стоимость некоторых рёбер может быть отрицательной, нам приходится использовать алгоритм Форда-Беллмана для поиска кратчайшего пути. Однако гораздо эффективней было бы применить алгоритм Дейкстры. Для этого нам надо перевзвесить рёбра графа.
| Определение: |
| Пусть дана транспортная сеть . Введем в каждой вершине потенциал . Тогда остаточная стоимость ребра определяется как |
Заметим, что сумма остаточных стоимостей ребер вдоль любого пути отличается от суммы стоимостей вдоль того же самого пути на разность между потенциалом первой и последней вершины.
Использование потенциалов Джонсона
Возьмём значения потенциалов в вершинах равными минимальному по цене расстоянию от стока до них или , если она недостижима. Так как — это длина какого-то пути до вершины , а — длина минимального пути, то , что от нас и требовалось. Значения потенциалов найдём с помощью алгоритма Форда-Беллмана. Таким образом, нам его придётся запустить всего один раз, а не на каждом шаге алгоритма.
Реализация
Модифицируем псевдокод из статьи про поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости:
for { } Запустим алгоритм Форда-Беллмана, в результате для каждой вершины: - расстояние , если за длину ребра принимается его стоимость. for { } while (существует путь в остаточной сети ) { кратчайший в смысле стоимости путь дополнить поток вдоль }
Асимптотика
Пусть все пропускные способности целочисленны. Обозначим время работы поиска кратчайшего пути . Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости работает за . Если использовать алгоритм Дейкстры с Фиббоначевыми кучами, то . В результате получим время работы .
Это лучше, чем , что получается при использовании алгоритма Форда-Беллмана.
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.