Алгоритм Куна для поиска максимального паросочетания — различия между версиями
м |
м |
||
| Строка 41: | Строка 41: | ||
:* Иначе, если вершина <tex>to</tex> уже насыщена каким-то ребром <tex>(p, to)</tex> и не посещена, то просто перейдем в нашем обходе в вершину <tex>p</tex>. | :* Иначе, если вершина <tex>to</tex> уже насыщена каким-то ребром <tex>(p, to)</tex> и не посещена, то просто перейдем в нашем обходе в вершину <tex>p</tex>. | ||
:** Пробуем найти часть увеличивающей цепи из вершины <tex>p</tex>. | :** Пробуем найти часть увеличивающей цепи из вершины <tex>p</tex>. | ||
| − | :** Если получилось, то удаляем из паросочетания ребро <tex>(p, to)</tex>, а вместо него добавляем <tex>( | + | :** Если получилось, то удаляем из паросочетания ребро <tex>(p, to)</tex>, а вместо него добавляем <tex>(v, to)</tex> |
: Этот обход, запущенный из вершины <tex>v</tex>, либо найдет увеличивающую цепь, и тем самым насытит вершину, либо же такой увеличивающей цепи не найдёт (и, следовательно, эта вершина уже не сможет стать насыщенной). | : Этот обход, запущенный из вершины <tex>v</tex>, либо найдет увеличивающую цепь, и тем самым насытит вершину, либо же такой увеличивающей цепи не найдёт (и, следовательно, эта вершина уже не сможет стать насыщенной). | ||
Версия 08:05, 17 января 2012
Содержание
Теорема
| Теорема: |
Если из вершины не существует дополняющей цепи относительно паросочетания и паросочетание получается из изменением вдоль дополняющей цепи, тогда из не существует дополняющей цепи в . |
| Доказательство: |
|
Алгоритм
- Алгоритм просматривает все вершины графа по очереди, запуская из каждой обход (в глубину или в ширину), пытающийся найти увеличивающую цепь, начинающуюся в этой вершине.
- Краткое описание алгоритма:
- Возьмём пустое паросочетание;
- Разобьем граф на две доли;
- Проходя по всем вершинам первой доли пытаемся найти увеличивающую цепь с началом в текущей вершине;
- Если удается найти увеличивающую цепь, выполняем чередование, то есть если ребро входило в цепь, то удалим его из паросочетания, а если не входило, то наоборот добавим.
- Найденное паросочетание и является максимальным.
- Будем считать, что граф уже разбит на две доли.
- Просматриваем все вершины первой доли графа :
- Если текущая вершина уже насыщена текущим паросочетанием (т.е. уже выбрано какое-то смежное ей ребро), то эту вершину пропускаем;
- Иначе алгоритм пытается насытить эту вершину, для чего запускается поиск увеличивающей цепи, начинающейся с этой вершины.
- Рассмотрим поиск увеличивающей цепи обходом в глубину.
- Изначально обход в глубину стоит в текущей ненасыщенной вершине первой доли.
- Просматриваем все рёбра из этой вершины, пусть текущее ребро — .
- Если вершина ещё не насыщена паросочетанием, то включаем ребро в паросочетание и прекращаем поиск из вершины .
- Иначе, если вершина уже насыщена каким-то ребром и не посещена, то просто перейдем в нашем обходе в вершину .
- Пробуем найти часть увеличивающей цепи из вершины .
- Если получилось, то удаляем из паросочетания ребро , а вместо него добавляем
- Этот обход, запущенный из вершины , либо найдет увеличивающую цепь, и тем самым насытит вершину, либо же такой увеличивающей цепи не найдёт (и, следовательно, эта вершина уже не сможет стать насыщенной).
- После того, как все вершины будут просмотрены, текущее паросочетание будет максимальным.
- Корректность алгоритма следует из теоремы Бержа и теоремы, описанной выше.
Релизация
- Граф хранится списками смежности
- Функция — обход в глубину, возвращает если есть увеличивающая цепь из вершины .
- В массиве хранятся паросочетания. Паросочетание есть ребро .
bool dfs(int v)
{
if (used[v])
return false;
used[v] = true;
for (int i = 0; i < g[v].size(); i++)
{
int to = g[v][i];
if (mt[to] == -1 || dfs(mt[to]))
{
mt[to] = v;
return true;
}
}
return false;
}
int main()
{
... чтение графа ...
mt.assign (k, -1);
for (int v = 0; v < n; v++)
{
used.assign(n, false);
dfs(v);
}
for (int i = 0; i < k; i++)
if (mt[i] != -1)
... вывод ...
}
Время работы
- Итак, алгоритм Куна можно представить как серию из запусков обхода в глубину на всём графе.
- Следовательно, всего этот алгоритм исполняется за время , где — количество ребер, что в худшем случае есть .
- Более точная оценка:
- В описанной выше реализации запуски обхода в глубину/ширину происходят только из вершин первой доли, поэтому весь алгоритм исполняется за время , где — число вершин первой доли. В худшем случае это составляет , где — число вершин второй доли.
Источники
- MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания
- Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.