Отношение рёберной двусвязности — различия между версиями
(→Реберная двусвязность) |
(→См. также) |
||
Строка 37: | Строка 37: | ||
== См. также == | == См. также == | ||
− | [[Отношение вершинной двусвязности]] | + | *[[Отношение вершинной двусвязности]] |
− | + | *[http://rain.ifmo.ru/cat/view.php/vis/graph-general/biconnected-components-2005 Визуализатор - компоненты двусвязности] | |
− | [http://rain.ifmo.ru/cat/view.php/vis/graph-general/biconnected-components-2005 Визуализатор - компоненты двусвязности] | ||
== Литература == | == Литература == | ||
* Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 60 с. — ISBN 5-354-00301-6 | * Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 60 с. — ISBN 5-354-00301-6 |
Версия 08:40, 17 января 2012
Реберная двусвязность
Определение: |
Две вершины графа называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути. | и
Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
Доказательство: |
Пусть
Рефлексивность: (Очевидно)Симметричность: (Очевидно)Транзитивность: иДоказательство: Пусть из Наличие двух таких реберно непересекающихся путей очевидно, а значит в есть два реберно непересекающихся пути, и соответственно. Обозначим за объединение двух реберно непересекающихся пути из в . будет реберно-простым циклом. Пусть вершины и - первые со стороны вершины на пересечении и с соответственно. Рассматриваем два пути и таких, что части и идут в разные стороны по относительно часовой стрелки. и реберно двусвязны. | - отношение реберной двусвязности.
Компоненты реберной двусвязности
Определение: |
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |
См. также
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 60 с. — ISBN 5-354-00301-6