Анализ свойств регулярных языков (пустота, совпадение, включение, конечность, подсчёт числа слов) — различия между версиями
Leugenea (обсуждение | вклад) м (→Алгоритм проверки на включение) |
|||
Строка 151: | Строка 151: | ||
=== Алгоритм проверки на включение === | === Алгоритм проверки на включение === | ||
− | Алгоритм проверки <tex>L_{1}</tex> на включение в <tex>L_{2}</tex> идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из <tex>L_{2}</tex>, не входящие в <tex>L_{1}</tex>, поэтому существование пар <tex>\langle v \in L_{1}, u \in L_{2} \rangle : eq(v, u) | + | Алгоритм проверки <tex>L_{1}</tex> на включение в <tex>L_{2}</tex> идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из <tex>L_{2}</tex>, не входящие в <tex>L_{1}</tex>, поэтому существование пар <tex>\langle v \in L_{1}, u \in L_{2} \rangle : eq(v, u) = true, v \notin T_{1}, u \in T_{2}</tex>, где <tex>T_{i}</tex> — множества допускающих состояний, не нарушает факт вхождения <tex>L_{1}</tex> в <tex>L_{2}</tex>. Таким образом, <tex>L_{1}</tex> не входит в <tex>L_{2}</tex> тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары <tex>\langle v, u \rangle</tex>, что <tex>eq(v, u)</tex> возвращает <tex>true</tex>, <tex>v \in T_{1}, u \notin T_{2}</tex>. |
==== Псевдокод ==== | ==== Псевдокод ==== | ||
Строка 203: | Строка 203: | ||
return false | return false | ||
return true | return true | ||
− | |||
== Конечность языка, подсчёт числа слов == | == Конечность языка, подсчёт числа слов == |
Версия 09:36, 17 января 2012
Содержание
Пустота
Определение: |
Регулярный язык называется пустым, если он не содержит ни одного слова. |
Язык, содержащий хотя бы одно слово, назовём непустым.
Утверждение: |
Регулярный язык является непустым тогда и только тогда, когда в любом задающем его автомате существует путь из стартового состояния в какое-либо из терминальных. |
Пусть язык содержит слово детерминированный конечный автомат , задающий этот язык, должен допускать . Тогда при переходе из стартового состояния по символам получится путь, оканчивающийся в одном из терминальных состояний. . ЛюбойПусть в автомате существует путь из стартового состояния в одно из допускающих. Рассмотрим последовательность символов на переходах, образующих этот путь. Строка из этой последовательности допускается автоматом, а значит, принадлежит языку. |
Алгоритм проверки языка на пустоту
Для определения пустоты языка по соответствующему ему автомату проще всего использовать алгоритм обхода в глубину. Язык не является пустым тогда и только тогда, когда при поиске из стартового состояния автомата окажется достижимой хотя бы одна терминальная вершина.
Псевдокод
boolean dfs(State v): v.seen = true if v.isFinal: return false for each State u in v.next: if !u.seen && !dfs(u): return false return true
boolean isEmpty(Automaton a): for each State v in a: v.seen = false return dfs(a.start)
Совпадение
Определение: |
Два регулярных языка совпадают, если любое слово или содержится в обоих языках, или не содержится ни в одном из них. |
Пусть и — детерминированные конечные автоматы, задающие языки и над одним алфавитом , соответственно. Совпадение языков (эквивалентность задающих их автоматов) означает, что любое слово, допустимое одним автоматом, допускается и другим. Назовём состояния из и из различимыми, если существует строка из символов , для которой выполняется
,
или
, ,
где
, — допускающие состояния, , — недопускающие.Все состояния, из которых не достигаются допускающие, не влияют на множество слов, допускаемых автоматами; назовём их бесполезными. Введём сток[1] — специальное недопускающее состояние, переходы по всем символам из которого ведут в него самого. Все переходы исходного автомата, которые отсутствовали или вели в бесполезные состояния, направим в сток.
Алгоритм проверки языков на совпадение
Первым шагом алгоритма является избавление автоматов от состояний, из которых недостижимы допускающие. Проще всего это реализовать обходом в глубину или в ширину из допускающих состояний по обратным рёбрам. Все непосещённые состояния затем удаляются из автоматов, вместо них вводится описанный выше сток.
Пусть — функция, принимающая пару состояний из первого и второго автоматов и возвращающая некоторое значение булевского типа. Второй шаг алгоритма — установка в для всех пар , кроме . Также создаётся очередь, в которую помещается пара .
Третий шаг алгоритма — обход в ширину. Пусть на текущем шаге из очереди получена пара . Тогда для всех символов рассматриваются пары . Если возвращает , данное значение устанавливается в , а в очередь добавляется пара .
Утверждение: |
Автоматы и эквивалентны тогда и только тогда, когда после окончания работы алгоритма не существует такой пары , что возвращает и ровно одно из допускающее. |
Пусть такой пары не существует. Возьмём произвольное слово длины и выпишем последовательность пар состояний : и справедливо . Так как пара была в очереди, каждая из последующих пар в процессе алгоритма также побывала в очереди, значит, для них возвращает . По предположению, или оба состояния допускающие в своих автоматах, или оба недопускающие. Таким образом, строка или входит в оба языка, или не входит ни в один.
|
Псевдокод
void reverseDfs(State v): v.canReach = true for each State u in v.prev: if !u.canReach: reverseDfs(u)
void setSink(Automaton a): State sink = new State for each symbol c in a.alphabet: sink.next(c) = sink for each State v in a: if !v.canReach: v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq) fill(eq, false) eq[a.start][b.start] = true Queue q = new Queue q.add((a.start, b.start)) while !q.isEmpty: (v, u) = q.remove() for each symbol c in a.alphabet: // a.alphabet == b.alphabet v' = v.next(c) u' = u.next(c) if !eq[v'][u']: eq[v'][u'] = true q.add((v', u'))
boolean areEqual(Automaton a, Automaton b) for each State v in a: v.canReach = false for each State v in a: if v.isFinal: reverseDfs(v) setSink(a) for each State v in b: v.canReach = false for each State v in b: if v.isFinal: reverseDfs(v) setSink(b) eq = new boolean[a.statesNumber][b.statesNumber] bfs(a, b, eq) for each State v in a: for each State u in b: if eq[v][u] && v.isFinal != u.isFinal: return false return true
Включение
Определение: |
Регулярный язык входит (включается) в регулярный язык , если любое слово, принадлежащее , принадлежит . |
Алгоритм проверки на включение
Алгоритм проверки
на включение в идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из , не входящие в , поэтому существование пар , где — множества допускающих состояний, не нарушает факт вхождения в . Таким образом, не входит в тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары , что возвращает , .Псевдокод
void reverseDfs(State v): v.canReach = true for each State u in v.prev: if !u.canReach: reverseDfs(u)
void setSink(Automaton a): State sink = new State for each symbol c in a.alphabet: sink.next(c) = sink for each State v in a: if !v.canReach: v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq) fill(eq, false) eq[a.start][b.start] = true Queue q = new Queue q.add((a.start, b.start)) while !q.isEmpty: (v, u) = q.remove() for each symbol c in a.alphabet: // a.alphabet == b.alphabet v' = v.next(c) u' = u.next(c) if !eq[v'][u']: eq[v'][u'] = true q.add((v', u'))
boolean belongs(Automaton a, Automaton b) for each State v in a: v.canReach = false for each State v in a: if v.isFinal: reverseDfs(v) setSink(a) for each State v in b: v.canReach = false for each State v in b: if v.isFinal: reverseDfs(v) setSink(b) eq = new boolean[a.statesNumber][b.statesNumber] bfs(a, b, eq) for each State v in a: for each State u in b: if eq[v][u] && v.isFinal && !u.isFinal: return false return true
Конечность языка, подсчёт числа слов
Определение: |
Регулярный язык называется конечным, если принадлежащее ему множество слов конечно. |
Утверждение: |
Детерминированный конечный автомат задаёт конечный язык тогда и только тогда, когда в не существует состояния , для которого выполняются три условия:
|
Пусть такое состояние существует, а строки таковы, что , — допускающее, — непустая. Рассмотрим строки вида . Их бесконечное количество, и все они, как легко увидеть, допускаются автоматом. Значит, язык бесконечен.
|
Алгоритм нахождения числа слов в языке
Доказанное утверждение позволяет свести задачу поиска числа слов в языке к поиску количества различных путей в ациклическом графе. Сначала с помощью обхода в глубину по обратным рёбрам определим полезные состояния, из которых достижимо хотя бы одно допускающее. Затем найдём любой цикл, состояния которого полезны, достижимый из старта; при нахождении констатируем бесконечность языка. Пусть язык конечен; тогда отсортируем автомат топологически. Введём функцию , задающую число различных путей из в ; . Заметим, что если известны значения для всех , из которых существует переход в , то . Количеством слов в языке будет сумма для всех допускающих .
Топологическую сортировку и поиск цикла можно объединить в один обход, но для наглядности они были разделены.
Псевдокод
Stack topSort(Automaton a): for each State v in a: v.seen = false Stack sorted = new Stack dfsSort(a.start, sorted) return sorted
void dfsSort(State v, Stack sorted): v.seen = true for each State u in v.next: if !u.seen: dfsSort(u, sorted) sorted.push(v)
void reverseDfs(State v): v.canReach = true for each State u in v.prev: if !u.canReach: reverseDfs(u)
boolean dfs(State v): // returns true if and only if there is a cycle v.color = GREY for each State u in v.next: if u.color == GREY: return true if u.canReach && u.color == WHITE && dfs(u): return true v.color = BLACK return false
int words(Automaton a): for each State v in a: v.canReach = false for each State v in a: if v.isFinal: reverseDfs(v) for each State v in a: v.color = WHITE if dfs(a.start): return infinity Stack sorted = topSort(a) paths = new int[a.statesNumber] fill(paths, 0) paths[0] = 1 while !sorted.isEmpty: State v = sorted.pop() for each State u in v.next: paths[u] += paths[v] int result = 0 for each State v in a: if v.isFinal: result += paths[v] return result
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. / Пер. с англ. — Москва: Издательский дом «Вильямс», 2002. — с. 169-177: ISBN 5-8459-0261-4 (рус.)
Примечания
- ↑ Другое название стока - «дьявольское состояние».