Использование обхода в глубину для поиска точек сочленения — различия между версиями
Dimitrova (обсуждение | вклад) (→Алгоритм) |
Dimitrova (обсуждение | вклад) (→Алгоритм) |
||
Строка 16: | Строка 16: | ||
#Пусть <tex>root</tex> — точка сочленения и у него есть только один сын. Тогда при удалении <tex>root</tex> остается дерево с корнем в его сыне, содержащее все остальные вершины графа, то есть оставшийся граф связен — противоречие с тем, что <tex>root</tex> — точка сочленения. | #Пусть <tex>root</tex> — точка сочленения и у него есть только один сын. Тогда при удалении <tex>root</tex> остается дерево с корнем в его сыне, содержащее все остальные вершины графа, то есть оставшийся граф связен — противоречие с тем, что <tex>root</tex> — точка сочленения. | ||
}} | }} | ||
− | + | [[Файл:Точки_сочленения.png| 200px|thumb|красным цветом обозначены точки сочленения]] | |
Пусть <tex>tin[u]</tex> — время входа поиска в глубину в вершину <tex>u</tex>. Через <tex>up[u]</tex> обозначим минимум из времени захода в саму вершину <tex>tin[u]</tex>, времен захода в каждую из вершин <tex>p</tex>, являющуюся концом некоторого обратного ребра <tex>(u,p)</tex>, а также из всех значений <tex>up[v]</tex> для каждой вершины <tex>v</tex>, являющейся непосредственным сыном <tex>u</tex> в дереве поиска. | Пусть <tex>tin[u]</tex> — время входа поиска в глубину в вершину <tex>u</tex>. Через <tex>up[u]</tex> обозначим минимум из времени захода в саму вершину <tex>tin[u]</tex>, времен захода в каждую из вершин <tex>p</tex>, являющуюся концом некоторого обратного ребра <tex>(u,p)</tex>, а также из всех значений <tex>up[v]</tex> для каждой вершины <tex>v</tex>, являющейся непосредственным сыном <tex>u</tex> в дереве поиска. | ||
Версия 19:49, 17 января 2012
Алгоритм
Дан связный неориентированный граф. Требуется найти все точки сочленения в нем.
Теорема: |
Пусть обхода в глубину, — корень . Вершина — точка сочленения — сын : из или любого потомка вершины нет обратного ребра в предка вершины . — точка сочленения имеет хотя бы двух сыновей в дереве поиска в глубину. — дерево |
Доказательство: |
|
Пусть
— время входа поиска в глубину в вершину . Через обозначим минимум из времени захода в саму вершину , времен захода в каждую из вершин , являющуюся концом некоторого обратного ребра , а также из всех значений для каждой вершины , являющейся непосредственным сыном в дереве поиска.Тогда из вершины
или её потомка есть обратное ребро в её предка такой сын , что .Таким образом, если для текущей вершины
существует непосредственный сын : , то вершина является точкой сочленения, в противном случае она точкой сочленения не является.Реализация
dfs(, ) Помечаем вершину , как посещенную ++ 0 for ( : из ) if ( родитель ) Переходим к следующей итерации цикла if ( посещено) // — предок вершины , — обратное ребро else // — ребенок вершины ++ dfs( ) if ( >= ) if ( корень) main() ... for ( из ) if ( не посещен) dfs( , -1);
Время работы алгоритма совпадает с временем работы .
Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.