Использование потенциалов Джонсона при поиске потока минимальной стоимости — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Литература)
м
Строка 6: Строка 6:
  
 
{{Определение
 
{{Определение
|definition=Пусть дана транспортная сеть <tex>\,G(V,E)</tex>. Введем в каждой вершине потенциал <tex>\,P_i</tex>. Тогда остаточная стоимость ребра <tex>\,C_{P_{ij}}</tex> определяется как
+
|definition=Пусть дана транспортная сеть <tex>\,G(V,E)</tex>. Введем в каждой вершине потенциал <tex>\,p_i</tex>. Тогда остаточная стоимость ребра <tex>\,c_{p_{ij}}</tex> определяется как
<tex>\,C_{P_{ij}} = C_{ij} + P_i - P_j </tex>
+
<tex>\,c_{p_{ij}} = c_{ij} + p_i - p_j </tex>
 
}}
 
}}
 
Заметим, что сумма остаточных стоимостей ребер вдоль любого пути отличается от суммы стоимостей вдоль того же самого пути на разность между потенциалом первой и последней вершины.
 
Заметим, что сумма остаточных стоимостей ребер вдоль любого пути отличается от суммы стоимостей вдоль того же самого пути на разность между потенциалом первой и последней вершины.
  
 
== Использование потенциалов Джонсона ==
 
== Использование потенциалов Джонсона ==
Возьмём значения потенциалов в вершинах равными минимальному по цене расстоянию от стока до них или <tex>+\infty</tex>, если она недостижима. Так как <tex>\,C_{ij} + P_i</tex> — это длина какого-то пути до вершины <tex>\,j</tex>, а <tex>\,P_j</tex> — длина минимального пути, то <tex>C_{P_{ij}} \geqslant 0</tex>, что от нас и требовалось.
+
Возьмём значения потенциалов в вершинах равными минимальному по цене расстоянию от стока до них или <tex>+\infty</tex>, если она недостижима. Так как <tex>\,c_{ij} + p_i</tex> — это длина какого-то пути до вершины <tex>\,j</tex>, а <tex>\,p_j</tex> — длина минимального пути, то <tex>c_{p_{ij}} \geqslant 0</tex>, что от нас и требовалось.
 
Значения потенциалов найдём с помощью [[Алгоритм Форда-Беллмана|алгоритма Форда-Беллмана]]. Таким образом, нам его придётся запустить всего один раз, а не на каждом шаге алгоритма.
 
Значения потенциалов найдём с помощью [[Алгоритм Форда-Беллмана|алгоритма Форда-Беллмана]]. Таким образом, нам его придётся запустить всего один раз, а не на каждом шаге алгоритма.
  

Версия 20:25, 17 января 2012

Мотивация

Идея аналогична идее, использующейся в алгоритме Джонсона.

При поиске потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости нам требуется находить минимальный по стоимости поток из истока в сток. Поскольку стоимость некоторых рёбер может быть отрицательной, нам приходится использовать алгоритм Форда-Беллмана для поиска кратчайшего пути. Однако гораздо эффективней было бы применить алгоритм Дейкстры. Для этого нам надо перевзвесить рёбра графа.


Определение:
Пусть дана транспортная сеть [math]\,G(V,E)[/math]. Введем в каждой вершине потенциал [math]\,p_i[/math]. Тогда остаточная стоимость ребра [math]\,c_{p_{ij}}[/math] определяется как [math]\,c_{p_{ij}} = c_{ij} + p_i - p_j [/math]

Заметим, что сумма остаточных стоимостей ребер вдоль любого пути отличается от суммы стоимостей вдоль того же самого пути на разность между потенциалом первой и последней вершины.

Использование потенциалов Джонсона

Возьмём значения потенциалов в вершинах равными минимальному по цене расстоянию от стока до них или [math]+\infty[/math], если она недостижима. Так как [math]\,c_{ij} + p_i[/math] — это длина какого-то пути до вершины [math]\,j[/math], а [math]\,p_j[/math] — длина минимального пути, то [math]c_{p_{ij}} \geqslant 0[/math], что от нас и требовалось. Значения потенциалов найдём с помощью алгоритма Форда-Беллмана. Таким образом, нам его придётся запустить всего один раз, а не на каждом шаге алгоритма.

Реализация

Модифицируем псевдокод из статьи про поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости:

for [math]e \in E[/math] {
     [math]f[e] \leftarrow 0[/math]
}
Запустим алгоритм Форда-Беллмана, в результате для каждой вершины: [math]p[v] [/math] — расстояние [math]s \leadsto e[/math], 
если за длину ребра принимается его стоимость.
for [math]e \in E[/math] {
     [math]c[e] \leftarrow c[e] + p[e.from] - p[e.to][/math]
}
while (существует путь [math]s \leadsto t[/math] в остаточной сети [math]G_f[/math]) {
      [math]P \leftarrow[/math] кратчайший в смысле стоимости путь [math]s \leadsto t[/math]
      дополнить поток [math]f[/math] вдоль [math]P[/math]
}

Асимптотика

Пусть все пропускные способности целочисленны. Обозначим время работы поиска кратчайшего пути [math]F(V, E)[/math]. Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости работает за [math]O(F(V, E) \cdot |f|)[/math]. Если использовать алгоритм Дейкстры с Фиббоначевыми кучами, то [math]F(V, E)= V log V + E[/math]. В результате получим время работы [math]O((V log V + E) \cdot |f| + V E)[/math].

Это лучше, чем [math]O((V E) \cdot |f|)[/math], что получается при использовании алгоритма Форда-Беллмана.

Литература

  • Andrew V. Goldberg An Efficient implementation of a scaling minimum-cost flow algorithm - Journal of Algorithms, 1997