Использование обхода в глубину для топологической сортировки — различия между версиями
(→Постановка задачи) |
Proshev (обсуждение | вклад) |
||
| Строка 44: | Строка 44: | ||
== Источники == | == Источники == | ||
* Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, второе издание. Пер. с англ. — Издательский дом "Вильямс", 2007. — 1296 с. — Глава 22. Элементарные алгоритмы для работы с графами. | * Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, второе издание. Пер. с англ. — Издательский дом "Вильямс", 2007. — 1296 с. — Глава 22. Элементарные алгоритмы для работы с графами. | ||
| − | * [http://habrahabr.ru/blogs/algorithm/100953/#habracut Топологическая сортировка на | + | * [http://habrahabr.ru/blogs/algorithm/100953/#habracut Топологическая сортировка на habrahabr] |
| + | |||
| + | [[Категория: Алгоритмы и структуры данных]] | ||
| + | [[Категория: Обход в глубину]] | ||
Версия 05:53, 18 января 2012
Топологическая сортировка ориентированного ациклического графа представляет собой такое линейное упорядочение всех его вершин, что если , то при таком упорядочении располагается до (если граф не является ациклическим, такая сортировка невозможна).
Содержание
Применение
Топологическая сортировка применяется в самых разных ситуациях, например при создании параллельных алгоритмов, когда по некоторому описанию алгоритма нужно составить граф зависимостей его операций и, отсортировав его топологически, определить, какие из операций являются независимыми и могут выполняться параллельно (одновременно). Примером использования топологической сортировки может служить создание карты сайта, где имеет место древовидная система разделов. Также топологическая сортировка применяется при обработке исходного кода программы в некоторых компиляторах и IDE, где строится граф зависимостей между сущностями, после чего они инициализируются в нужном порядке, либо выдается ошибка о циклической зависимости.
Постановка задачи
| Теорема: | ||||||
— ациклический ориентированный граф, тогда | ||||||
| Доказательство: | ||||||
|
Определим как порядковый номер окраски вершины в черный цвет в результате работы алгоритма dfs. Рассмотрим функцию . Очевидно, что такая функция подходит под критерий функции из условия теоремы, если выполняется следующее утверждение:
| ||||||
Алгоритм
Из определения функции мгновенно следует алгоритм топологической сортировки:
doTopSort(graph G) {
fill(visited, false);
time = 0;
for (vertex v : v in graph G) {
if (!visited[v]) {
dfs(v);
}
}
}
dfs(vertex u) {
visited[u] = true;
for (vertex v : exists edge uv) {
if (!visited[v]) {
dfs(v);
}
}
topSortAnswer[u] = n - time++;
}
Время работы этого алгоритма соответствует времени работы алгоритма поиска в глубину, то есть равно .
Источники
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, второе издание. Пер. с англ. — Издательский дом "Вильямс", 2007. — 1296 с. — Глава 22. Элементарные алгоритмы для работы с графами.
- Топологическая сортировка на habrahabr