|
|
Строка 40: |
Строка 40: |
| Пусть <tex>G = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>I_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>. | | Пусть <tex>G = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>I_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>. |
| |proof= | | |proof= |
− | Ситуацию <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> можно включить в <tex>I_j</tex> только по правилам <tex>(1)</tex> и <tex>(2)</tex>. Если она включается по правилу <tex>(1)</tex>, то последний символ цепочки <tex>\alpha</tex> {{---}} терминал, а если по правилу <tex>(2)</tex>, то {{---}} нетерминал. В первом случае результат очевиден. Во втором случае допустим, что <tex>[A \rightarrow \alpha'B \cdot \beta, i]</tex> включается в <tex>I_j</tex>, когда рассматриваются две различные ситуации <tex>[B \rightarrow \gamma \cdot, k]</tex> и <tex>[B \rightarrow \delta \cdot, l]</tex>. Тогда ситуация <tex>[A \rightarrow \alpha' \cdot B\beta, i]</tex> должна оказаться одновременно в <tex>I_k</tex> и в <tex>I_l</tex>. | + | Ситуацию <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> можно включить в <tex>I_j</tex> только по правилам <tex>(1)</tex> (если последний символ <tex>\alpha</tex> — терминал) и <tex>(2)</tex> (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что <tex>[A \rightarrow \alpha'B \cdot \beta, i]</tex> включается в <tex>I_j</tex>, когда рассматриваются две различные ситуации <tex>[B \rightarrow \eta_1 \cdot, k_1]</tex> и <tex>[B \rightarrow \eta_2 \cdot, k_2]</tex>. Тогда ситуация <tex>[A \rightarrow \alpha' \cdot B\beta, i]</tex> должна оказаться одновременно в <tex>I_{k_1}</tex> и в <tex>I_{k_2}</tex>. |
− | #Пусть <tex>k \ne l</tex>. Тогда по [[Алгоритм Эрли#Корректность алгоритма|теореме]] существуют такие <tex>\theta_1, \theta_2, \theta_3</tex> и <tex>\theta_4</tex>, что <tex>S \Rightarrow^* \theta_1 A \theta_2 \Rightarrow \theta_1 \alpha' B \beta \theta_2 \Rightarrow^* a_1 \dots a_n</tex> и <tex>S \Rightarrow^* \theta_3 A \theta_4 \Rightarrow \theta_3 \alpha' B \beta \theta_4 \Rightarrow^* a_1 \dots a_n</tex>. Но в первом выводе <tex>\theta_1 \alpha' \Rightarrow^* a_1 \dots a_k</tex>, а во втором <tex>\theta_1 \alpha' \Rightarrow^* a_1 \dots a_l</tex>. Тогда для цепочки <tex>a_1 \dots a_n</tex> существуют два разных дерева вывода, в которых <tex>a_{i+1} \dots a_j</tex> выводится из <tex>\alpha' B</tex> двумя разными способами. | + | # Пусть <tex>k_1 \ne k_2</tex>. Тогда существуют такие <tex>\gamma_1, \delta_1, \gamma_2</tex> и <tex>\delta_2</tex>, что <tex>S \Rightarrow^* \gamma_1 A \delta_1 \Rightarrow \gamma_1 \alpha' B \beta \delta_1</tex> и <tex>S \Rightarrow^* \gamma_2 A \delta_2 \Rightarrow \gamma_2 \alpha' B \beta \delta_2</tex>. Но в первом выводе <tex>\gamma_1 \alpha' \Rightarrow^* a_1 \dots a_{k_1}</tex>, а во втором <tex>\gamma_2 \alpha' \Rightarrow^* a_1 \dots a_{k_2}</tex>. Тогда для цепочки <tex>a_1 \dots a_n</tex> существуют два разных дерева вывода, в которых <tex>a_{i+1} \dots a_j</tex> выводится из <tex>\alpha' B</tex> двумя разными способами. |
− | #Пусть <tex>k = l</tex>. Тогда <tex>\gamma \ne \delta</tex>. Тогда, так как <tex>[B \rightarrow \gamma \cdot, k] \in I_j</tex> и <tex>[B \rightarrow \delta \cdot, k] \in I_j</tex>, то <tex>\gamma \Rightarrow a_{k+1} \dots a_j</tex> и <tex>\delta \Rightarrow a_{k+1} \dots a_j</tex>, то есть <tex>a_{k+1} \dots a_j</tex> выводится двумя разными способами. | + | # Пусть <tex>k_1 = k_2</tex>. Тогда <tex>\eta_1 \ne \eta_2</tex>. Тогда, так как <tex>[B \rightarrow \eta_1 \cdot, k_1] \in I_j</tex> и <tex>[B \rightarrow \eta_2 \cdot, k_1] \in I_j</tex>, то <tex>\eta_1 \Rightarrow^* a_{k_1 + 1} \dots a_j</tex> и <tex>\eta_2 \Rightarrow^* a_{k_1 + 1} \dots a_j</tex>, то есть <tex>a_{k_1 + 1} \dots a_j</tex> выводится двумя разными способами. |
| }} | | }} |
| | | |
Алгоритм
Приведем Алгоритм Эрли.
На вход подается КС-грамматика [math]G = (N, \Sigma, P, S)[/math] и строка [math]w = a_1 a_2 \ldots a_n[/math] из [math]\Sigma^*[/math]. Результатом работы алгоритма является список разбора [math]I_0, I_1, \ldots , I_n[/math] для строки [math]w[/math].
Для простоты добавим новый стартовый вспомогательный нетерминал [math]S'[/math] и правило [math]S' \rightarrow S[/math].
[math]I_0[/math] ∪= [math][S' \rightarrow \cdot S, 0][/math] # Правило (0) — инициализация
useful_loop(0)
for i = 1..n
for [math][A \rightarrow \alpha \cdot a_{j} \beta, i] \in I_{j-1}[/math]
[math]I_j[/math] ∪= [math][A \rightarrow \alpha a_{j} \cdot \beta, i][/math] # Правило (1)
useful_loop(j)
function useful_loop(j):
do
for [math][B \rightarrow \eta \cdot , i] \in I_j[/math]
for [math][A \rightarrow \alpha \cdot B \beta, k] \in I_{i}[/math]
[math]I_j[/math] ∪= [math][A \rightarrow \alpha B \cdot \beta, k][/math] # Правило (2)
for [math][B \rightarrow \alpha \cdot A \eta, k] \in I_j[/math]
for [math]\beta : (A \rightarrow \beta) \in P[/math]
[math]I_j[/math] ∪= [math][A \rightarrow \cdot \beta, j][/math] # Правило (3)
while на данной итерации какое-то множество изменилось
Время работы для однозначной грамматики
Лемма (1): |
[math]\forall\,j: 1 \le j \le n[/math] в списке [math]I_j[/math] находится [math]O(j)[/math] ситуаций. |
Доказательство: |
[math]\triangleright[/math] |
Так как грамматика фиксирована, то [math]\forall i[/math] количество ситуаций вида [math][A \rightarrow \alpha \cdot \beta, i][/math] не больше некоторой константы. Таким образом, поскольку в [math]I_j[/math] находятся ситуации, у которых [math]0 \le i \le j[/math], всего в [math]I_j[/math] будет [math]O(j)[/math] ситуаций. |
[math]\triangleleft[/math] |
Лемма (2): |
Пусть [math]G = (N, \Sigma, P, S)[/math] — однозначная КС-грамматика и [math]a_1 \dots a_n[/math] — цепочка из [math]\Sigma^*[/math]. Тогда алгоритм Эрли пытается включить [math][A \rightarrow \alpha \cdot \beta, i][/math] в [math]I_j[/math] не более одного раза, если [math]\alpha \ne \varepsilon[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Ситуацию [math][A \rightarrow \alpha \cdot \beta, i][/math] можно включить в [math]I_j[/math] только по правилам [math](1)[/math] (если последний символ [math]\alpha[/math] — терминал) и [math](2)[/math] (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что [math][A \rightarrow \alpha'B \cdot \beta, i][/math] включается в [math]I_j[/math], когда рассматриваются две различные ситуации [math][B \rightarrow \eta_1 \cdot, k_1][/math] и [math][B \rightarrow \eta_2 \cdot, k_2][/math]. Тогда ситуация [math][A \rightarrow \alpha' \cdot B\beta, i][/math] должна оказаться одновременно в [math]I_{k_1}[/math] и в [math]I_{k_2}[/math].
- Пусть [math]k_1 \ne k_2[/math]. Тогда существуют такие [math]\gamma_1, \delta_1, \gamma_2[/math] и [math]\delta_2[/math], что [math]S \Rightarrow^* \gamma_1 A \delta_1 \Rightarrow \gamma_1 \alpha' B \beta \delta_1[/math] и [math]S \Rightarrow^* \gamma_2 A \delta_2 \Rightarrow \gamma_2 \alpha' B \beta \delta_2[/math]. Но в первом выводе [math]\gamma_1 \alpha' \Rightarrow^* a_1 \dots a_{k_1}[/math], а во втором [math]\gamma_2 \alpha' \Rightarrow^* a_1 \dots a_{k_2}[/math]. Тогда для цепочки [math]a_1 \dots a_n[/math] существуют два разных дерева вывода, в которых [math]a_{i+1} \dots a_j[/math] выводится из [math]\alpha' B[/math] двумя разными способами.
- Пусть [math]k_1 = k_2[/math]. Тогда [math]\eta_1 \ne \eta_2[/math]. Тогда, так как [math][B \rightarrow \eta_1 \cdot, k_1] \in I_j[/math] и [math][B \rightarrow \eta_2 \cdot, k_1] \in I_j[/math], то [math]\eta_1 \Rightarrow^* a_{k_1 + 1} \dots a_j[/math] и [math]\eta_2 \Rightarrow^* a_{k_1 + 1} \dots a_j[/math], то есть [math]a_{k_1 + 1} \dots a_j[/math] выводится двумя разными способами.
|
[math]\triangleleft[/math] |
Теорема: |
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины [math]n[/math] составляет [math]O(n^2)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Орагнизуем каждый список разбора [math]I_j[/math] таким образом, чтобы по любому символу [math]x \in \Sigma \cup N[/math], можно было за [math]O(1)[/math] получить список тех и только тех ситуаций, содержащихся в [math]I_j[/math], которые имеют вид [math][A \rightarrow \alpha \cdot x \beta, j][/math].
При построении [math]I_0[/math] входная строка не учитывается, поэтому этот список можно построить за константное время.
Рассмотрим [math]I_j, \, j \gt 0[/math].
- При включении ситуации по правилу [math](1)[/math] исследуется [math]a_j[/math] и предыдущий список. Для каждой ситуации из [math]I_{j-1}[/math] с символом [math]a_j[/math], расположенным справа от точки, в [math]I_j[/math] включается некоторая ситуация. Так как список в [math]I_{j-1}[/math] можно найти за [math]O(1)[/math] по символу [math]a_j[/math], то на включение каждой ситуации в [math]I_j[/math] будет потрачено [math]O(1)[/math] операций.
- Если применяется правило [math](2)[/math], то в некотором списке [math]I_k[/math] для [math]k \le j[/math] надо просмотреть все ситуации, содержащие [math]"\cdot B"[/math] для некоторого конкретного [math]B[/math]. Для каждой такой ситуации в [math]I_j[/math] включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке.
- Так как грамматика фиксирована, то при применении правила [math](3)[/math] при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому на рассматриваемую ситуацию будет потрачено [math]O(1)[/math] операций.
Таким образом, на каждую ситуацию в каждом списке тратится [math]O(1)[/math] операций. Тогда, учитывая лемму 1, получаем, что время работы алгоритма составляет [math]O(n^2)[/math]. |
[math]\triangleleft[/math] |
Литература
- А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.