Алгоритм Эрли, доказательство оценки O(n^2) для однозначной грамматики — различия между версиями
Kirelagin (обсуждение | вклад) (Улучшил оформление доказательства второй леммы, но оно всё ещё неправильное) |
Kirelagin (обсуждение | вклад) |
||
Строка 52: | Строка 52: | ||
Орагнизуем каждый список разбора <tex>I_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>I_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>. | Орагнизуем каждый список разбора <tex>I_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>I_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>. | ||
− | + | Время построения <tex>I_0</tex> не зависит от входной строки. | |
Рассмотрим <tex>I_j, \, j > 0</tex>. | Рассмотрим <tex>I_j, \, j > 0</tex>. | ||
# При включении ситуации по правилу <tex>(1)</tex> исследуется <tex>a_j</tex> и предыдущий список. Для каждой ситуации из <tex>I_{j-1}</tex> с символом <tex>a_j</tex>, расположенным справа от точки, в <tex>I_j</tex> включается некоторая ситуация. Так как список в <tex>I_{j-1}</tex> можно найти за <tex>O(1)</tex> по символу <tex>a_j</tex>, то на включение каждой ситуации в <tex>I_j</tex> будет потрачено <tex>O(1)</tex> операций. | # При включении ситуации по правилу <tex>(1)</tex> исследуется <tex>a_j</tex> и предыдущий список. Для каждой ситуации из <tex>I_{j-1}</tex> с символом <tex>a_j</tex>, расположенным справа от точки, в <tex>I_j</tex> включается некоторая ситуация. Так как список в <tex>I_{j-1}</tex> можно найти за <tex>O(1)</tex> по символу <tex>a_j</tex>, то на включение каждой ситуации в <tex>I_j</tex> будет потрачено <tex>O(1)</tex> операций. | ||
− | #Если применяется правило <tex>(2)</tex>, то в некотором списке <tex>I_k</tex> для <tex>k \le j</tex> надо просмотреть все ситуации, содержащие <tex>"\cdot B"</tex> для некоторого конкретного <tex>B</tex>. Для каждой такой ситуации в <tex>I_j</tex> включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке. | + | # Если применяется правило <tex>(2)</tex>, то в некотором списке <tex>I_k</tex> для <tex>k \le j</tex> надо просмотреть все ситуации, содержащие <tex>"\cdot B"</tex> для некоторого конкретного <tex>B</tex>. Для каждой такой ситуации в <tex>I_j</tex> включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке. |
− | #Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому на рассматриваемую ситуацию будет потрачено <tex>O(1)</tex> операций. | + | # Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому на рассматриваемую ситуацию будет потрачено <tex>O(1)</tex> операций. |
Таким образом, на каждую ситуацию в каждом списке тратится <tex>O(1)</tex> операций. Тогда, учитывая лемму 1, получаем, что время работы алгоритма составляет <tex>O(n^2)</tex>. | Таким образом, на каждую ситуацию в каждом списке тратится <tex>O(1)</tex> операций. Тогда, учитывая лемму 1, получаем, что время работы алгоритма составляет <tex>O(n^2)</tex>. | ||
}} | }} |
Версия 03:17, 19 января 2012
Алгоритм
Приведем Алгоритм Эрли.
На вход подается КС-грамматика и строка из . Результатом работы алгоритма является список разбора для строки .
Для простоты добавим новый стартовый вспомогательный нетерминал
и правило .∪= # Правило (0) — инициализация useful_loop(0) for i = 1..n for ∪= # Правило (1) useful_loop(j)
function useful_loop(j): do forfor ∪= # Правило (2) for for ∪= # Правило (3) while на данной итерации какое-то множество изменилось
Время работы для однозначной грамматики
Лемма (1): |
в списке находится ситуаций. |
Доказательство: |
Так как грамматика фиксирована, то | количество ситуаций вида не больше некоторой константы. Таким образом, поскольку в находятся ситуации, у которых , всего в будет ситуаций.
Лемма (2): |
Пусть — однозначная КС-грамматика и — цепочка из . Тогда алгоритм Эрли пытается включить в не более одного раза, если . |
Доказательство: |
Ситуацию можно включить в только по правилам (если последний символ — терминал) и (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что включается в , когда рассматриваются две различные ситуации и . Тогда ситуация должна оказаться одновременно в и в .
|
Теорема: |
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины составляет . |
Доказательство: |
Орагнизуем каждый список разбора таким образом, чтобы по любому символу , можно было за получить список тех и только тех ситуаций, содержащихся в , которые имеют вид .Время построения не зависит от входной строки.Рассмотрим .
|
Литература
- А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.