|
|
Строка 1: |
Строка 1: |
| ==Алгоритм== | | ==Алгоритм== |
− | Приведем [[алгоритм Эрли|Алгоритм Эрли]].
| + | Для начала модифицируем [[Алгоритм Эрли|алгоритм Эрли]]. |
| | | |
− | На вход подается [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|КС-грамматика]] <tex>G = (N, \Sigma, P, S)</tex> и строка <tex>w = a_1 a_2 \ldots a_n</tex> из <tex>\Sigma^*</tex>. Результатом работы алгоритма является [[Алгоритм Эрли#Определения|список разбора]] <tex>I_0, I_1, \ldots , I_n</tex> для строки <tex>w</tex>.
| + | Удалим из входной грамматики [[Удаление eps-правил из грамматики|<tex>\varepsilon</tex>-правила]] и [[Удаление бесполезных символов из грамматики|бесполезные символы]]. В итоге получится грамматика <tex>G = (N, \Sigma, P, S)</tex>. |
| | | |
− | Для простоты добавим новый стартовый вспомогательный нетерминал <tex>S'</tex> и правило <tex>S' \rightarrow S</tex>.
| + | <tex>I_0</tex> = <tex>\{[S \rightarrow \cdot \alpha, 0] \, | \, S \rightarrow \alpha \in P\}</tex> # Правило (0) — инициализация |
− | | |
− | <tex>I_0</tex> ∪= <tex>[S' \rightarrow \cdot S, 0]</tex> # Правило (0) — инициализация | |
| useful_loop(0) | | useful_loop(0) |
| | | |
Версия 08:33, 19 января 2012
Алгоритм
Для начала модифицируем алгоритм Эрли.
Удалим из входной грамматики [math]\varepsilon[/math]-правила и бесполезные символы. В итоге получится грамматика [math]G = (N, \Sigma, P, S)[/math].
[math]I_0[/math] = [math]\{[S \rightarrow \cdot \alpha, 0] \, | \, S \rightarrow \alpha \in P\}[/math] # Правило (0) — инициализация
useful_loop(0)
for i = 1..n
for [math][A \rightarrow \alpha \cdot a_{j} \beta, i] \in I_{j-1}[/math]
[math]I_j[/math] ∪= [math][A \rightarrow \alpha a_{j} \cdot \beta, i][/math] # Правило (1)
useful_loop(j)
function useful_loop(j):
[math]I_j'' = I_j[/math]
while [math]I_j'' \ne \varnothing[/math]
[math]I_j' = I_j''[/math]
[math]I_j'' = \varnothing[/math]
for [math][B \rightarrow \eta \cdot , i] \in I_j'[/math]
for [math][A \rightarrow \alpha \cdot B \beta, k] \in I_{i}[/math]
[math]I_j[/math] ∪= [math][A \rightarrow \alpha B \cdot \beta, k][/math] # Правило (2)
for [math][B \rightarrow \alpha \cdot A \eta, k] \in I_j'[/math]
for [math]\beta : (A \rightarrow \beta) \in P[/math]
[math]I_j[/math] ∪= [math][A \rightarrow \cdot \beta, j][/math] # Правило (3)
[math]I_j[/math] ∪= [math]I_j''[/math]
Время работы для однозначной грамматики
Лемма (1): |
[math]\forall\,j: 1 \le j \le n[/math] в списке [math]I_j[/math] находится [math]O(j)[/math] ситуаций. |
Доказательство: |
[math]\triangleright[/math] |
Так как грамматика фиксирована, то [math]\forall i[/math] количество ситуаций вида [math][A \rightarrow \alpha \cdot \beta, i][/math] не больше некоторой константы. Таким образом, поскольку в [math]I_j[/math] находятся ситуации, у которых [math]0 \le i \le j[/math], всего в [math]I_j[/math] будет [math]O(j)[/math] ситуаций. |
[math]\triangleleft[/math] |
Лемма (2): |
Пусть [math]G = (N, \Sigma, P, S)[/math] — однозначная КС-грамматика без непорождающих нетерминалов и [math]a_1 \dots a_n[/math] — цепочка из [math]\Sigma^*[/math]. Тогда алгоритм Эрли пытается включить [math][A \rightarrow \alpha \cdot \beta, i][/math] в [math]I_j[/math] не более одного раза, если [math]\alpha \ne \varepsilon[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Ситуацию [math][A \rightarrow \alpha \cdot \beta, i][/math] можно включить в [math]I_j[/math] только по правилам [math](1)[/math] (если последний символ [math]\alpha[/math] — терминал) и [math](2)[/math] (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что [math][A \rightarrow \alpha'B \cdot \beta, i][/math] включается в [math]I_j[/math], когда рассматриваются две различные ситуации [math][B \rightarrow \eta_1 \cdot, k_1][/math] и [math][B \rightarrow \eta_2 \cdot, k_2][/math]. Тогда ситуация [math][A \rightarrow \alpha' \cdot B\beta, i][/math] должна оказаться одновременно в [math]I_{k_1}[/math] и в [math]I_{k_2}[/math]. Таким образом, получаем:
- [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}[/math] и [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}[/math]
- [math]\eta_1 \Rightarrow^* a_{k_1+1} \ldots a_j[/math] и [math]\eta_2 \Rightarrow^* a_{k_2+1} \ldots a_j[/math]
Следовательно
- [math]\alpha' \eta_1 \Rightarrow^* a_{i+1} \ldots a_j[/math] и [math]\alpha' \eta_2 \Rightarrow^* a_{i+1} \ldots a_j[/math]
Заметим, что [math]S \Rightarrow^* \gamma A \delta \Rightarrow^* a_1 \ldots a_i A \delta \Rightarrow a_1 \ldots a_i \alpha' B \beta \delta[/math]. Предположим, что [math]\beta \delta \Rightarrow^* w'[/math]. Тогда:
- [math]S \Rightarrow^* a_1 \ldots a_i \alpha' \eta_1 w'[/math] и [math]S \Rightarrow^* a_1 \ldots a_i \alpha' \eta_2 w'[/math]
Таким образом, если [math]k_1 \ne k_2[/math], то подстрока [math]a_{i+1} \ldots a_j[/math] выводится двумя различными способами из [math]\alpha' \eta_1[/math] и [math]\alpha' \eta_2[/math], то есть у строки [math]a_1 \ldots a_jw'[/math] есть два различных вывода, что противоречит однозначности грамматики. Если же [math]k_1 = k_2[/math], то [math]\eta_1 \ne \eta_2[/math], что приводит к аналогичному противоречию. |
[math]\triangleleft[/math] |
Теорема: |
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины [math]n[/math] составляет [math]O(n^2)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Орагнизуем каждый список разбора [math]I_j[/math] таким образом, чтобы по любому символу [math]x \in \Sigma \cup N[/math], можно было за [math]O(1)[/math] получить список тех и только тех ситуаций, содержащихся в [math]I_j[/math], которые имеют вид [math][A \rightarrow \alpha \cdot x \beta, j][/math].
Время построения [math]I_0[/math] не зависит от входной строки.
Рассмотрим [math]I_j, \, j \gt 0[/math].
- При включении ситуаций по правилу [math](1)[/math] необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций.
- Если применяется правило [math](2)[/math], то в некотором списке [math]I_k[/math] для [math]k \le j[/math] надо просмотреть все ситуации, содержащие [math]"\cdot B"[/math] для некоторого конкретного [math]B[/math]. Для каждой такой ситуации в [math]I_j[/math] включается другая ситуация, и это время относится не к рассматриваемой ситуации, а к включаемой. Кроме того, так как по второй лемме для каждой ситуации предпринимается только одна попытка включить ее в список, то не нужно тратить время на проверку того, что включаемая ситуация уже есть в списке.
- Так как грамматика фиксирована, то при применении правила [math](3)[/math] при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому на рассматриваемую ситуацию будет потрачено [math]O(1)[/math] операций.
Таким образом, на каждую ситуацию в каждом списке тратится [math]O(1)[/math] операций. Тогда, учитывая лемму 1, получаем, что время работы алгоритма составляет [math]O(n^2)[/math]. |
[math]\triangleleft[/math] |
Литература
- А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.