Анализ свойств регулярных языков (пустота, совпадение, включение, конечность, подсчёт числа слов) — различия между версиями
Shevchen (обсуждение | вклад) м |
Shevchen (обсуждение | вклад) м |
||
| Строка 54: | Строка 54: | ||
}} | }} | ||
| − | + | Для проверки совпадения языков достаточно запустить алгоритм проверки [[Эквивалентность_состояний_ДКА|эквивалентности]] задающих их автоматов. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
== Включение одного регулярного языка в другой == | == Включение одного регулярного языка в другой == | ||
Версия 09:47, 21 января 2012
Для различных операций с регулярными языками полезно знать некоторые их свойства. Как правило, в доказательствах этих свойств используется факт эквивалентности автоматных и регулярных языков.
Содержание
Пустота регулярного языка
| Определение: |
| Регулярный язык называется пустым, если он не содержит ни одного слова. |
Язык, содержащий хотя бы одно слово, назовём непустым.
| Теорема: |
Регулярный язык является непустым тогда и только тогда, когда в любом задающем его автомате существует путь из стартового состояния в какое-либо из терминальных. |
| Доказательство: |
|
Пусть язык содержит слово . Любой детерминированный конечный автомат , задающий этот язык, должен допускать . Тогда при переходе из стартового состояния по символам получится путь, оканчивающийся в одном из терминальных состояний. Пусть в автомате существует путь из стартового состояния в одно из допускающих. Рассмотрим последовательность символов на переходах, образующих этот путь. Строка из этой последовательности допускается автоматом, а значит, принадлежит языку. |
Алгоритм проверки языка на пустоту
Для определения пустоты языка по соответствующему ему автомату проще всего использовать алгоритм обхода в глубину. Язык не является пустым тогда и только тогда, когда при поиске из стартового состояния автомата окажется достижимой хотя бы одна терминальная вершина.
Псевдокод
boolean dfs(State v):
v.seen = true
if v.isFinal:
return false
for each State u in v.next:
if !u.seen && !dfs(u):
return false
return true
boolean isEmpty(Automaton a):
for each State v in a:
v.seen = false
return dfs(a.start)
Совпадение регулярных языков
| Определение: |
| Два регулярных языка совпадают, если любое слово или содержится в обоих языках, или не содержится ни в одном из них. |
Для проверки совпадения языков достаточно запустить алгоритм проверки эквивалентности задающих их автоматов.
Включение одного регулярного языка в другой
| Определение: |
| Регулярный язык входит (включается) в регулярный язык , если любое слово, принадлежащее , принадлежит . |
Алгоритм проверки на включение
Алгоритм проверки на включение в идентичен алгоритму проверки их совпадения, кроме одной особенности. Могут существовать слова из , не входящие в , поэтому существование пар , где — множества допускающих состояний, не нарушает факт вхождения в . Таким образом, не входит в тогда и только тогда, когда после окончания работы алгоритма, идентичного алгоритму проверки на совпадение, не существует такой пары , что возвращает , .
Псевдокод
void reverseDfs(State v):
v.canReach = true
for each State u in v.prev:
if !u.canReach:
reverseDfs(u)
void setSink(Automaton a):
State sink = new State
for each symbol c in a.alphabet:
sink.next(c) = sink
for each State v in a:
if !v.canReach:
v = sink
void bfs(Automaton a, Automaton b, boolean[][] eq)
fill(eq, false)
eq[a.start][b.start] = true
Queue q = new Queue
q.add((a.start, b.start))
while !q.isEmpty:
(v, u) = q.remove()
for each symbol c in a.alphabet: // a.alphabet == b.alphabet
v' = v.next(c)
u' = u.next(c)
if !eq[v'][u']:
eq[v'][u'] = true
q.add((v', u'))
boolean belongs(Automaton a, Automaton b)
for each State v in a:
v.canReach = false
for each State v in a:
if v.isFinal:
reverseDfs(v)
setSink(a)
for each State v in b:
v.canReach = false
for each State v in b:
if v.isFinal:
reverseDfs(v)
setSink(b)
eq = new boolean[a.statesNumber][b.statesNumber]
bfs(a, b, eq)
for each State v in a:
for each State u in b:
if eq[v][u] && v.isFinal && !u.isFinal:
return false
return true
Конечность регулярного языка, подсчёт числа слов
| Определение: |
| Регулярный язык называется конечным, если принадлежащее ему множество слов конечно. |
| Теорема: |
Детерминированный конечный автомат задаёт конечный язык тогда и только тогда, когда в не существует состояния , для которого выполняются три условия:
|
| Доказательство: |
|
Пусть такое состояние существует, а строки таковы, что , — допускающее, — непустая. Рассмотрим строки вида . Их бесконечное количество, и все они, как легко увидеть, допускаются автоматом. Значит, язык бесконечен.
|
Алгоритм нахождения числа слов в языке
Доказанное утверждение позволяет свести задачу поиска числа слов в языке к поиску количества различных путей в ациклическом графе. Сначала с помощью обхода в глубину по обратным рёбрам определим полезные состояния, из которых достижимо хотя бы одно допускающее. Затем найдём любой цикл, состояния которого полезны, достижимый из старта; при нахождении констатируем бесконечность языка. Пусть язык конечен; тогда отсортируем автомат топологически. Введём функцию , задающую число различных путей из в ; . Заметим, что если известны значения для всех , из которых существует переход в , то . Количеством слов в языке будет сумма для всех допускающих .
Топологическую сортировку и поиск цикла можно объединить в один обход, но для наглядности они были разделены.
Псевдокод
Stack topSort(Automaton a):
for each State v in a:
v.seen = false
Stack sorted = new Stack
dfsSort(a.start, sorted)
return sorted
void dfsSort(State v, Stack sorted):
v.seen = true
for each State u in v.next:
if !u.seen:
dfsSort(u, sorted)
sorted.push(v)
void reverseDfs(State v):
v.canReach = true
for each State u in v.prev:
if !u.canReach:
reverseDfs(u)
boolean dfs(State v): // returns true if and only if there is a cycle
v.color = GREY
for each State u in v.next:
if u.color == GREY:
return true
if u.canReach && u.color == WHITE && dfs(u):
return true
v.color = BLACK
return false
int words(Automaton a):
for each State v in a:
v.canReach = false
for each State v in a:
if v.isFinal:
reverseDfs(v)
for each State v in a:
v.color = WHITE
if dfs(a.start):
return infinity
Stack sorted = topSort(a)
paths = new int[a.statesNumber]
fill(paths, 0)
paths[0] = 1
while !sorted.isEmpty:
State v = sorted.pop()
for each State u in v.next:
paths[u] += paths[v]
int result = 0
for each State v in a:
if v.isFinal:
result += paths[v]
return result
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. / Пер. с англ. — Москва: Издательский дом «Вильямс», 2002. — с. 169-177: ISBN 5-8459-0261-4 (рус.)