Алгоритм Эрли, доказательство оценки O(n^2) для однозначной грамматики — различия между версиями
Kirelagin (обсуждение | вклад) (→Время работы для однозначной грамматики) |
Kirelagin (обсуждение | вклад) ((Отмена правки 17695) Ладно, хрен с тобой) |
||
| Строка 59: | Строка 59: | ||
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>. | Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>. | ||
|proof= | |proof= | ||
| − | + | Орагнизуем каждый список разбора <tex>I_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>I_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>. | |
| − | + | Время построения <tex>I_0</tex> не зависит от входной строки. | |
| − | + | Рассмотрим <tex>I_j, \, j > 0</tex>. | |
| + | # При включении ситуаций по правилу <tex>(1)</tex> необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций. | ||
| + | # Рассмотрим правило <tex>(2)</tex>. Можно считать, что внутри цикла <tex>(*)</tex> рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за <tex>O(1)</tex>). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке <tex>I_j</tex> находится <tex>O(j)</tex> ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла <tex>(*)</tex> будет рассмотрено <tex>O(j)</tex> ситуаций. | ||
| + | # Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено <tex>O(1)</tex> операций. | ||
| + | Таким образом, на построение списка <tex>I_j</tex> будет потрачено <tex>O(j)</tex> операций. Тогда время работы алгоритма составляет <tex>O(n^2)</tex>. | ||
}} | }} | ||
==Литература== | ==Литература== | ||
*А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ. | *А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ. | ||
Версия 02:11, 24 января 2012
Алгоритм
Для начала модифицируем алгоритм Эрли.
Будем рассматривать грамматику без ε-правил и бесполезных символов.
= # Правило (0) — инициализация useful_loop(0) for j = 1..n for ∪= # Правило (1) useful_loop(j)
function useful_loop(j):
while
for # (*)
for
∪= # Правило (2)
for # (**)
for
∪= # Правило (3)
∪=
В циклах, помеченных и , просматривается не весь список , а только те ситуации, которые были добавлены на предыдущей итерации цикла while. Данная модификация является корректной.
- Рассмотрим цикл . Если в текущей ситуации этого цикла , то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию в цикле рассматривать не нужно. Если же , то , что возможно, только если . Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как не встречается в правых частях правил.
- Теперь рассмотрим цикл . Так как для каждой ситуации в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для .
Таким образом, во все списки будут добавлены ситуации, которые были бы добавлены в ходе обычного алгоритма. Очевидно, что лишних ситуаций добавлено не будет, так как в циклах и просматривается подмножество полного списка. Значит этот алгоритм эквивалентен оригинальному.
Время работы для однозначной грамматики
| Лемма (1): |
в списке находится ситуаций. |
| Доказательство: |
| Так как грамматика фиксирована, то количество ситуаций вида не больше некоторой константы. Таким образом, поскольку в находятся ситуации, у которых , всего в будет ситуаций. |
| Лемма (2): |
Пусть — однозначная КС-грамматика без непорождающих нетерминалов и — цепочка из . Тогда алгоритм Эрли пытается включить в не более одного раза, если . |
| Доказательство: |
|
Ситуацию можно включить в только по правилам (если последний символ — терминал) и (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что включается в , когда рассматриваются две ситуации и (они различны, так как в цикле каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация должна оказаться одновременно в и в . Таким образом, получаем:
Следовательно, и . |
| Теорема: |
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины составляет . |
| Доказательство: |
|
Орагнизуем каждый список разбора таким образом, чтобы по любому символу , можно было за получить список тех и только тех ситуаций, содержащихся в , которые имеют вид . Время построения не зависит от входной строки. Рассмотрим .
|
Литература
- А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.